Browsing by Author "Avots, Egils"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Brain abnormality detection using statistical analysis of individual structural connectivity networks and EEG signals(2023-11-27) Avots, Egils; Anbarjafari, Gholamreza, juhendaja; Bachmann, Maie, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondTipptasemel meditsiiniteaduse ja tehisintellekti uuringud on valmis ümber kujundama ajuhaiguste diagnoosimist. Käesolev doktoritöö “Statistilisel analüüsil põhinev aju ebanormaalsuste tuvastamine kasutades individuaalsete struktuuriliste ühenduvuste võrke ja EEG signaale” keskendub Alzheimeri tõvele ja kliinilisele depressioonile, kasutades tipptasemel tehnoloogiaid uuenduste esile toomiseks. Sünni, trauma, haiguse või muude asjaolude tagajärjel tekkinud ajuanomaaliad mõjutavad oluliselt inimese füüsilist ja vaimset tervist. Selles doktoritöös käsitletakse kaht peamist teemat: MRT kaudu diagnoositud Alzheimeri tõve ning EEG kaudu tuvastatud kliinilist depressiooni. Masinõppe algoritmid tõlgendavad ajuskanneeringu pilte, et tuvastada haigustele omaseid mustreid, nagu näiteks ajustruktuuri muudatusi Alzheimeri tõve puhul. Erinevatel pildimustritel põhinev andmete analüüs võimaldab haiguse olemasolu diagnoosida kiiremini ning täpsemalt. Kliinilise depressiooni puhul analüüsib masinõpe EEG salvestusi, et tuvastada ajutegevusega seotud muudatusi ning ennustada depressiooni esinemist. EEG kaudu on võimalik mõõta depressiooniga seotud ajutegevust ning masinõppe abil tuvastada haiguspilt. EEG mustrite analüüs võimaldab edukat patsientide klassifitseerimist ning seeläbi kiiremat diagnoosimist. Käesolev lõputöö toob esile inimese leidlikkust ning tehisintellekti potentsiaali tervishoiu paremaks muutmiseks. See viitab uuele ajastule ajuhäirete diagnoosimisel, kus on võimalik senisest kiiremini ning täpsemini Alzheimeri tõve ja kliinilist depressiooni tuvastada. Tulevikus on potentsiaalselt näha mitmeid paremaid tervishoiu lahendusi, mida taolised tehnoloogiad edendavad.Item Garment retexturing using Kinect V2.0(Tartu Ülikool, 2017) Avots, Egils; Anbarjafari, Gholamreza, juhendaja; Escalera, Sergio, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. TehnoloogiainstituutThis thesis describes three new garment retexturing methods for FitsMe virtual fitting room applications using data from Microsoft Kinect II RGB-D camera. The first method, which is introduced, is an automatic technique for garment retexturing using a single RGB-D image and infrared information obtained from Kinect II. First, the garment is segmented out from the image using GrabCut or depth segmentation. Then texture domain coordinates are computed for each pixel belonging to the garment using normalized 3D information. Afterwards, shading is applied to the new colors from the texture image. The second method proposed in this work is about 2D to 3D garment retexturing where a segmented garment of a manikin or person is matched to a new source garment and retextured, resulting in augmented images in which the new source garment is transferred to the manikin or person. The problem is divided into garment boundary matching based on point set registration which uses Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. The final contribution of this thesis is by introducing another novel method which is used for increasing the texture quality of a 3D model of a garment, by using the same Kinect frame sequence which was used in the model creation. Firstly, a structured mesh must be created from the 3D model, therefore the 3D model is wrapped to a base model with defined seams and texture map. Afterwards frames are matched to the newly created model and by process of ray casting the color values of the Kinect frames are mapped to the UV map of the 3D model.