Sirvi Autor "Brodiazhenko, Tetiana" järgi
Nüüd näidatakse 1 - 3 3
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains(PNAS, 2022-02-04) kurata, Tatsuki; Saha, Chayan Kumar; Buttress, Jessica A.; Mets, Toomas; Brodiazhenko, Tetiana; Turnbull, Kathrin J; Awoyomi, Ololade F.; Oliveira, Sofia Raquel Alves; Jimmy, Steffi; Ernits, Karin; Delannoy, Maxence; Persson, Karina; Tenson, Tanel; Strahl, Henrik; Haurilyiuk, Vasili; Atkinson, Gemma CToxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.Kirje RelA-SpoT homolog enzymes as effectors of Toxin-Antitoxin systems(2022-10-25) Brodiazhenko, Tetiana; Hauryliuk, Vasili, juhendaja; Tenson, Tanel, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondNagu kõik elusorganismid, tunnetavad bakterid keskkonda ja reageerivad suurele hulgale erinevatele stressidele, kohandades vastavalt oma füsioloogiat. Üks peamisi stressivastuseid on poomisvastus. Poomisvastus vahendab bakterite kohanemist toitainete vähesusega, samuti vastust abiootilisele keskkonnastressidele nagu näiteks kuumašokk. Rohkem kui kuus aastakümmet tagasi avastati, et häirenukleotiidid ppGpp ja pppGpp – ühiselt viidatud kui (p)ppGpp – ehk maagilised laigud tekivad Escherichia coli rakkudes vastusena aminohapete vähesusele. Poomisvastuse esimene füsioloogiline roll, mis tuvastati, oli stabiilse RNA (rRNA ja tRNA) sünteesi pärssimine, mis on kooskõlastatud aminohapete biosünteesi ja stressitaluvusega seotud geenide ekspressiooni indutseerimisega. Aastakümneid kestnud uuringud on aga näidanud, et lisaks transkriptsioonile on (p)ppGpp sihtmärkideks ka mitmed muud rakus toimuvad protsessid, nagu translatsioon, ribosoomide kokkupanek, antibiootikumiresistentsus ja virulentsus. Veel üks oluline bakterite regulatsioonisüsteem põhineb toksiini – antitoksiin (TA) süsteemidel. Esimesed toksiini-antitoksiin (TA) süsteemide esindajad avastati 80ndate alguses. Klassikalised TA süsteemid on bitsistroonilised – st koosnevad kahest geenist – operonist, milles üks geen kodeerib valgulist toksiini ja teine antitoksiini, valku või RNAd, mis toksiini kas otseselt või kaudselt neutraliseerib. TA-süsteemide uuringud on viimastel aastatel plahvatuslikult kasvanud, avastatud on arvukalt uusi TA perekondi, iseloomustatud nende toimemehhanisme, iseloomustatud bioloogilisi funktsioone ja pakutud välja võimalikke rakendusi biotehnoloogias. Enim iseloomustatud funktsioonid hõlmavad plasmiidi säilitamist, kaitset bakteriofaagide vastu ja rakufüsioloogia reguleerimist. Käesolevas uuringus kirjeldati RSH perekonna ensüümide uusi aktiivsusi ja toksiinide neutraliseerimise spetsiifilisust PanA antitoksiini perekonna liikmete poolt. Lisaks eelpool kirjeldatud protsessidele toimub stressi ajal ribosoomide dimerisatsioon. See stressivastus on kasulik rakkudele ellujäämiseks, kuid võib lüsaatide kasutamise korral biotehnoloogias olla probleemiks kuna vähendab rakuvabade translatsioonisüsteemide aktiivsust. Seetõttu uuriti ribosoomi dimeriseerumise eest vastutavate valkude eemaldamise mõju rakulüsaatide aktiivsusele. Leiti, et RSH ensüümide ensümaatiline aktiivsus ei piirdu (p)ppGpp tootmise ja lagunemisega. ToxSAS RSH PhRel2, FaRel2, PhRel ja CapRel alamperekondade liikmed katalüüsivad tRNA 3'CCA otsa pürofosforüülimist ja FaRel perekonna liikmed katalüüsivad (pp)pApp sünteesi. SAH alamperekonna liikmed MESH1 ja ATfaRel katalüüsivad pürofosfaadi eemaldamist PP-tRNA-st ja (pp)pApp lagunemist. Ühist PanA domeeni sisaldavad antitoksiinid neutraliseerivad erinevaid toksiine. PanA-vahendatud toksiinide neutraliseerimine on toksiini osas siiski spetsiifiline. Ribosoomi dimerisatsioonifaktorite geneetiline elimineerimine bakteri B. subtilis (hfp) ja pärmi S. cerevisiae (stm1) tüvedes on paljulubav strateegia aktiivsemate rakuvabade translatsioonilüsaatide tootmiseks. Reaktsiooni optimeerimisel on oluline panna tähele Mg2+ ja muude komponentide kontsentratsioone ja omavahelisi suhteid.Kirje RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis(Cell Press, 2021-08) Brodiazhenko, Tetiana; Alves Oliveira, Sofia Raquel; Roghanian, Mohammad; Sakaguchi, Yuriko; Turnbull, Kathryn Jane; Bulvas, Ondrej; Takada, Hiraku; Tamman, Hedvig; Ainelo, Andres; Pohl, Radek; Rejman, Dominik; Tenson, Tanel; Suzuki, Tsutomu; Garcia-Pino, Abel; Atkinson, Gemma C; Haurilyiuk, Vasili; Kurata, TatsukiRelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3′ CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.