Sirvi Autor "Grjaznov, Kirill" järgi
Nüüd näidatakse 1 - 2 2
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Dirichlet’ kalibreerimismeetodi analüüs(Tartu Ülikool, 2020) Grjaznov, Kirill; Kull, Meelis, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituutIn machine learning, one of the problems with classification methods is that classifiers give too confident probabilities. The solution to the problem is calibration which performs a correction on the predicted probabilities. In this bachelor's thesis, the Dirichlet calibration method is analyzed. The change of the calibration matrix was studied through the classifier training process, its effect on the results at different training stages, and the nature of the elements of the calibration matrix was interpreted. The paper described how the calibration is performed with the Dirichlet calibration method and how the calibration matrix shows and improves the confidence of the classifier. The experiments were performed on deep neural networks with the architectures ResNet110, Wide ResNet32 and DenseNet40 classifiers and on the CIFAR-10 dataset. The analysis showed that the classifiers were over confident throughout the whole training process, and the Dirichlet calibration method improves confidence at each stage of the training process.Kirje Päikesepaneelide tootlikkuse ennustamine(Tartu Ülikool, 2023) Grjaznov, Kirill; Kull, Meelis, juhendaja; Aan, Janika, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituutEesti on osa Nord Pool elektribörsist, seega on vajalik elektrienergia tarbimise prognoosimine järgmiseks päevaks. Eesmärk on hoida elektrisüsteemi bilanssi, tagades, et ostetud elektrienergia kogus vastab tegelikule tarbimisele. Taastuvenergia, nagu päikeseenergia, on kõikuv, seega selle tootlikkuse ennustamine võimaldab paremini planeerida elektrienergia tarnet järgmiseks päevaks. Magistritöö käigus loodi masinõppe mudel, mis ennustab päikesepaneelide pargi elektritootlikkust tunni täpsusega järgmise päeva jooksul. Mudeli treenimisel kasutati 1-aastase ajaloolise ilmaennustuste andmeid ja päikesepaneelide tootlikkuse andmeid ning arvutati ka päikese ja paneelide vaheliste nurkade väärtused igal ajahetkel. Ehitati ja võrreldi kolme mudelit: lineaarne regressioon, XGBoost ja LSTM-ansambel. Parimaks osutus LSTM-ansambel, mille wMAPE-testväärtus oli terve kalendriaasta jooksul 29%.