Sirvi Autor "Lumiste, Kaur" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Improving accuracy of survey estimators by using auxiliary information in data collection and estimation stages(2017-12-13) Lumiste, Kaur; Traat, Imbi, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondValikuuringute keskkond on pidevas muutuses ja arenev. Pidevalt arendatakse uusi uuringute disaine, mis üritavad lahendada uuringufirmade ühe süvenevaid probleeme, nagu langevad vastamismäärad, vähenevad uuringute eelarved ja vastajate suur koormus küsitluste paljususe tõttu. Enamus uuemaid meetodeid kasutab abiinformatsiooni – informatsioon kõikide üldkogumi elementide kohta, mida saab kasutada kõigis uuringu etappides. Käesolevas dissertatsioonis on fookuses andmete kogumise ja hindamise etapid. Andmete kogumisel paratamatult ei saada kõikide valimi elementide vastuseid kätte ehk tekib kadu. Lõplik vastanute hulk pole seetõttu esinduslik üldkogumi suhtes. Kohanduvate disainide korral sekkutakse andmete kogumise protsessi ja juhitakse vastajate kaasamist abitunnuseid kasutavate indikaatoritega, et saavutada esinduslikum vastanute hulk hindamise etapiks. Töös kasutame tasakaalu indeksit, mis mõõdab abitunnuste keskmiste erinevust vastanute hulgas ja valimis. Tasakaalu indeksi abil andmete kogumise suunamist nimetame tasakaalustamiseks. Väitekirjas esitame teoreetilisi tulemusi, mis näitavad tasakaalustamise positiivseid tagajärgi. Näitame, et kahel erijuhul leidub seos tasakaalu indeksi ja kao poolt tingitud nihke vahel, ning tasakaalustamise püüdlused andmete kogumise etapis vähendavad suure kaost tingitud nihke tekkimise riski. Kui hindamise etapil saame lisa abitunnuseid, näiteks välitööde protsessis tekkivad andmed, siis abitunnuste vektor erineb andmete kogumise ja hindamise etappidel. Töös tuletame valemid, kus saame lisa abitunnuste mõju välja tuua ja uurida. Üks võimalik abiinformatsiooni allikas on varasemad küsitlusuuringud. Töös uurime juhtu, kus tahame hinnata kahe tunnuse järgi ristklassifitseeritud osakogumites uuritavaid tunnuseid ja saavutada kooskõla teistest uuringutest pärineva marginaalsete osakogumite infoga. Käsitletakse kahte võimalikku meetodit ja antud erijuhu jaoks on tuletatud valemid. Kõik tulemused on illustreeritud simulatsioonide abil.