Sirvi Autor "Sharma, Shakshi" järgi
Nüüd näidatakse 1 - 2 2
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Fighting misinformation in the digital age: a comprehensive strategy for characterizing, identifying, and mitigating misinformation on online social media platforms(2023-09-25) Sharma, Shakshi; Sharma, Rajesh, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondVeebipõhiste sotsiaalmeediaplatvormide, nagu Twitter ja Facebook, esilekerkimine on hõlbustanud valeteabe ülemaailmset levitamist, soodustades sotsiaalse hirmu, ärevuse ja majandusliku kahju kasvu. Lõputöö uurib mitmekülgset lähenemisviisi desinformatsiooniga võitlemiseks digiajastul, keskendudes kolmele põhidimensioonile: valeinformatsiooni sisu tuvastamine, raamistiku väljatöötamine valeinformatsiooni levitajate tuvastamiseks, ja tõhusate desinformatsioonivastaste meetmete rakendamine. Esiteks on meie väljapakutud postituste iseloomustamise meetodi eesmärk mõista kuulujuttudest ja mittekuulujuttudest postituste tunnuseid, et tuvastada postitajate kognitiivne tegevus ja desinformatsiooni levitamise motiivid. Sotsiaalmeediapostituste omaduste põhjalik uurimine aitab teadlaskonnal tuvastada ja vältida desinformatsiooni. Teiseks ei ole varasemad meetodid kahtlaste või pahatahtlike kasutajate ja desinformatsiooni tuvastamiseks Twitteris ja teistel sarnastel platvormidel piisavalt kaalunud kasutajatasandil toimuvat tuvastamist. Ühe postituse põhjal kasutaja kuulujuttude levitajaks liigitamisest ei piisa. Meie panus sellesse valdkonda on klassifitseerimisraamistik, mis ühendab parema lähenemisviisi väljatöötamiseks mitmed postitused ja võrguteabe. Kolmandaks on olemasolevad sotsiaalmeedias desinformatsiooni leviku piiramise lähenemisviisid kohati piiratud, näiteks puudub väline modereerimine ja süsteem tugineb rangetele eeldustele. Esitame automatiseeritud lahenduse valeinformatsiooni suuremahuliseks ümberlükkamiseks, kasutades selleks sotsiaalmeedia andmeid ja kureeritud kontrollitud faktidega andmehoidlaid. Eelkõige keskendutakse selles aspektis Twitteri platvormile ja COVID-19 väärinfole, uurides kahte teineteist täiendavat lähenemisviisi.Kirje Predicting company innovativeness by analysing the website data of firms: a comparison across different types of innovation(2022) Sõna, Sander; Masso, Jaan; Sharma, Shakshi; Vahter, Priit; Sharma, RajeshThis paper investigates which of the core types of innovation can be best predicted based on the website data of firms. In particular, we focus on four distinct key standard types of innovation – product, process, organisational, and marketing innovation in firms. Web-mining of textual data on the websites of firms from Estonia combined with the application of artificial intelligence (AI) methods turned out to be a suitable approach to predict firm-level innovation indicators. The key novel addition to the existing literature is the finding that web-mining is more applicable to predicting marketing innovation than predicting the other three core types of innovation. As AI based models are often black-box in nature, for transparency, we use an explainable AI approach (SHAP - SHapley Additive exPlanations), where we look at the most important words predicting a particular type of innovation. Our models confirm that the marketing innovation indicator from survey data was clearly related to marketing-related terms on the firms' websites. In contrast, the results on the relevant words on websites for other innovation indicators were much less clear. Our analysis concludes that the effectiveness of web-scraping and web-text-based AI approaches in predicting cost-effective, granular and timely firm-level innovation indicators varies according to the type of innovation considered.