Browsing by Author "Summer, Faiza"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Development and optimization of flow electrode capacitor technology(2022-04-08) Summer, Faiza; Torop, Janno, juhendaja; Zadin, Veronika, juhendaja; Aabloo, Alvo, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondElektrokeemiline voogkondensaator (EFC) on kontseptuaalne lahendus elektrienergia mastaapseks salvestamiseks. Kõnealune seade sarnaneb tööpõhimõttelt superkondensaatorile, aga olulise erinevusena kasutab tahkete elektroodide asemel süsniniku mikro ja nano-osakestest ning elektrolüüdist koosnevat suspensiooni. Elektrolüüdiga suspensioon on eraldatud poorse, ioonjuhtiva membraaniga ja seadmes on tüüpiliselt mõne millimeetrilise diameetriga kanalid, mille sein on voolkollektoriks ning millest pumbatakse läbi eelpool kirjeldatud suspensiooni. Just nimelt süsinikupõhiste vedelate elektroodide kasutamine võimaldab arendatavat seadet olulisel määral skaleerida ning tulevikus integreerida olemasolevatesse elektrivõrkudesse ja/või rakendada seda efektiivselt taastuvate energiaallikate poolt toodetud elektrienergia salvestamiseks. Doktoritöö keskseks eesmärgiks on EFC-tehnoloogia fundamentaalsete omaduste interpreteerimine. Sellest tulenevalt on töös on läbi viidud EFC elektrokeemilised karakteriseerimised ja arvutisimulatsioonid seadme disainlahenduste optimeerimiseks. Simulatsioonide valdkonnas on sobitatud EFC modelleerimiseks nii olemasolevaid elektrokeemilisi mudeled kui on arendatud ka uudne nn stohhastiline Monte-Carlo põhimõtetel baseeruv mudel. Väljatöötatud mudelid kalibreeriti ja valideeriti põhjalikult võrdluses elektrokeemiliste tulemustega ning neid kasutati voogelektroodide laadimisprotsessi sügavamaks mõistmiseks kolmes fundamentaalses EFC-seadme konstruktsioonis. Sarnaste elektrokeemiliste seadmete modelleerimiseks kasutatakse tihti Nernst-Planki võrranditel või kontsentreeritud lahuse teooriatel baseeruvaid mudeleid. Luuakse teist järku osatuletsitega diferentsiaalvõrrandite süsteemid, mis kirjeldavad nii ioonide kontsentratsioone kui ka seadmes tekkivaid laenguülekande protsesse. Nende mudelite rakendamine iseloomustas ilmekalt difusiooni tõttu seadmes tekkivaid laengu salvestamise ja osakeste transpordi piiranguid. Efektiivne elektroodimaterjali tsirkulatsioon ning piisavalt kiire laengu transport on teineteisele vastanduvad protsessid – kui esimesel juhul on oluliseks näitajaks piisavalt suur elektroodi voolukanalite diameeter, siis teisel juhul on nõutav just nimelt sama kanali diameetri minimiseerimine. Samas ilmnes eksperimentaalsest tulemustest, et mitte ainult difusioonist tingitud nähtused pole olulised, vaid märkimisväärset mõju omavad ka nn kõrvalreaktsioonid. Töö käigus loodud stohhastiline mudel võimaldas saavutada edukalt elektrokeemiliste mõõtmistulemuste ning Nernst-Planki võrranditel baseeruvate mudelitega leitud tulemuste kokkulangevuse. Enamgi, loodud stohhastiline mudel võimaldab edukalt simuleerida vedelate elektroodide laadumise dünaamikat ja kirjeldada suspensioonis asetleidvaid protsesse ning hinnata kõrvalreaktsioonide mõjusid. Kokkuvõtvalt avab loodud lähenemisviis võimaluse leidmaks lahendust voogkondensaatori disaini kesksele probleemile – kuidas tagada seadmest piisav elektroodimaterjali läbivool ning samas hoiduda laengu transpordi limiteerimisest difusiooni tõttu. EFC-tehnoloogia edasise arengu puhul võib eeldada taastuvatest allikatest toodetud energia salvestamisvõimsuse märkimisväärset kasvu. Samas tuleb lisada, et EFC võimsustiheduse parandamiseks, ilma et see kahjustaks nende seadmete energiatihedust ning tsükleeritavust, on vaja jälgida arenduste kooskõla ka muude energiasalvestus- ja muundamis-tehnoloogiatega. Olulisteks faktoriteks on nii seadme töötingimuste valik, elektroodide disain, elektrolüüdi materjalid, kuid samuti ka sobilikud katalüsaatorid.