Sirvi Autor "Zosa, Elaine" järgi
Nüüd näidatakse 1 - 2 2
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Got Compute, but No Data: Lessons From Post-training a Finnish LLM(University of Tartu Library, 2025-03) Zosa, Elaine; Komulainen, Ville; Pyysalo, Sampo; Johansson, Richard; Stymne, SaraAs LLMs gain more popularity as chatbots and general assistants, methods have been developed to enable LLMs to follow instructions and align with human preferences. These methods have found success in the field, but their effectiveness has not been demonstrated outside of high-resource languages. In this work, we discuss our experiences in post-training an LLM for instruction-following for English and Finnish. We use a multilingual LLM to translate instruction and preference datasets from English to Finnish. We perform instruction tuning and preference optimization in English and Finnish and evaluate the instruction-following capabilities of the model in both languages. Our results show that with a few hundred Finnish instruction samples we can obtain competitive performance in Finnish instruction-following. We also found that although preference optimization in English offers some cross-lingual benefits, we obtain our best results by using preference data from both languages. We release our model, datasets, and recipes under open licenses at https://huggingface.co/LumiOpen/Poro-34B-chat-OpenAssistant.Kirje Poro 34B and the Blessing of Multilinguality(University of Tartu Library, 2025-03) Luukkonen, Risto; Burdge, Jonathan; Zosa, Elaine; Talman, Aarne; Komulainen, Ville; Hatanpää, Väinö; Sarlin, Peter; Pyysalo, Sampo; Johansson, Richard; Stymne, SaraThe pretraining of state-of-the-art large language models now requires trillions of words of text, which is orders of magnitude more than available for the vast majority of languages. While including text in more than one language is an obvious way to acquire more pretraining data, multilinguality is often seen as a curse, and most model training efforts continue to focus near-exclusively on individual large languages. We believe that multilinguality can be a blessing: when the lack of training data is a constraint for effectively training larger models for a target language, augmenting the dataset with other languages can offer a way to improve over the capabilities of monolingual models for that language. In this study, we introduce Poro 34B, a 34 billion parameter model trained for 1 trillion tokens of Finnish, English, and programming languages, and demonstrate that a multilingual training approach can produce a model that substantially advances over the capabilities of existing models for Finnish and excels in translation, while also achieving competitive performance in its class for English and programming languages. We release the model parameters, scripts, and data under open licenses at https://huggingface.co/LumiOpen/Poro-34B.