Embedded system for real-time emotional arousal classification

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Tartu Ülikool

Abstract

We, humans, can distinguish the emotions of others with ease and we always expect any sort of emotional response during a conversation. Machines, however, do not possess emotion related skills, which makes human-machine interactions feel alien and soulless. Therefore, development of an efficient emotion recognition system is one of the crucial steps towards human-like artificial intelligence. A common person can also find use in emotion recognition. It would be a great help to the people, who by various reason either have weak control over own emotions or devoid of any ability to perceive emotions of others. This thesis focuses on creating a solution based on compact hardware to classify emotions in relation to its level of arousal. For this, theory concerning the emotions and their classifications were gathered, after which numerous methods of machine learning and feature description were reviewed and tried out. The methods list support vector machines, random forests, facial landmark feature extraction and histogram of oriented gradients. The project has came to a halt halfway through due to poor results: small scale hardware appeared unsuitable for extensive machine learning operations. It can be resumed with the possibility of introducing another set of hardware purely for recognition models training and leaving the compact one deal with pre-made model. In estonian: Me, inimesed, oskame kergelt tajuda teiste emotsioone, ning ootame mingi emotsionaalset tagasisidet suhtlemise korral. Masinad, kuid, ei oma emotsioonidega seotud oskust, mistõttu inimese ja masina vastastikmõju tundub hingetu ja võõrana. Seepärast, tõhusa emotsiooni tunnustamise arendus on üks ülioluline samm inimesesarnase tehisintellekti suuna. Tava inimene ka saab leida kasu emotsiooni tunnustamises. See saab aidata inimesi, kellel on erinevate põhjuste tõttu nõrk kontroll oma emotsioonide üle või nad ei saa teiste emotsioone tundma. Käesolev töö keskendub kompaktse riistvara baseeritud lahenduse peale emotsiooni liigitamiseks sõltuvalt temast erutusest. Selleks, emotsiooni puudutav teooria oli kogutud, mille pärast arvukad masinõppimise ja tunnuste ekstraheerimise meetodid olid vaadeldatud ja ära proovitud. Need meetodid on tugivektor-masinad, otsustusmetsad, näoorientiiri tunnuste ekstraheerimine ja suunatud gradientide histogramm. Kehva tulemuste tõttu projekt jäi seisma: väikese mastaabi riistvara kujunes vimetuks laiaulatusliku masinõppimise sooritamise jaoks. Seda saab jätkata, kui lisada projekti võimeka riistvara, et ta treeniks tajumiste muudelit ja edastaks kompaktsele riistvarale juba eeltreenitud muudelit rakendamiseks.

Description

Keywords

masinõppimine, emotsioon, pilditöötlus, tugivektor-masin, otsustusmets, scikitlearn, tehisintellekt, machine learning, emotion, image processing, support vector machine, random forest, artificial intelligence

Citation