Predicting the molecular mechanisms of genetic variants

dc.contributor.advisorAlasoo, Kaur, juhendaja
dc.contributor.authorYarish, Dzvenymyra-Marta
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-10-04T07:33:49Z
dc.date.available2024-10-04T07:33:49Z
dc.date.issued2024
dc.description.abstractHaiguste mehhanismide avastamiseks ja uute ravimisihtmärkide prioritiseerimise hõlbustamiseks on vaja paremini mõista neid molekulaarseid mehhanisme, mille kaudu geneetiliste variandid mõjutavad haiguseid ja teisi komplekstunnuseid. Tavaliselt kasutatakse variantide toimemehhanismide väljaselgitamiseks molekulaarsete kvantitatiivse tunnuse lookuste (ingl k molecular quantitative trait locus, molQTL) uuringud, mis peaksid aitama tuvastada, kas konkreetne geneetiline variant mõjutab RNA splaissimist (sQTL) või geeniekspressiooni (eQTL). Kahjuks ei suuda aga molQTL meetodid täpselt vahet teha splaissimise ja geeniekspressiooni mehhanismidel ning lisaks ei ole neil võimekust tuvastada haruldaste variantide mõju. Nende puuduste ületamiseks uurisime, kas ja kuidas oleks võimalik kasutada masinõpet variantide toimemehhanismide ennustamiseks. Esmalt koostasime me käsitsi kureeritud treeningandmestiku, milles olid kahte tüüpi molQTLid: splaissimist mõjutavad sQTLid ja läbi kromatiini avatuse geeniekspressiooni mõjutavad eQTLid. Seejärel võrdlesime kahe süvanärvivõrgumudeli (Enformer ja ChromBPNet) võimet ennustada geneetilise variandi mõju kromatiini avatusele ja leidsime, et ChromBPNet mudeli ennustused olid üldiselt täpsemad. Järgmiseks töötasime välja geneetilise variandi toimemehhanismi ennustamise mudeli, mis ühendas endas klassikalised genoomiülesed tunnused erinevate süvaõppemudelite ennustustega. See mudel saavutas sQTL ja eQTL klasside eristamisel peaaegu 90% täpsuse, ületades märgatavalt ühe suure alusmudeli skooridel põhineva klassifikaatori 80%-list täpsust. Viimaks rakendasime toimemehhanismi ennustamise mudelit eQTL Catalogue andmebaasis olevat QTLid klassifitseerimiseks. Meie mudeli ennustused olid hästi kooskõlas geeniekspressiooni QTL-idega, kuid enamikku Leafcutteri meetodi poolt tuvastatud võimalikke splaissimise seoseid ei klassifitseeritud sQTL-ideks. Käesoleva töö käigus loodud uudne andmekogum ja esialgne masinõppemudel võimaldavad tulevikus paremini ennustada haigusseoseliste geneetiliste variantide toimemehhanisme.”
dc.identifier.urihttps://hdl.handle.net/10062/105106
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectQTL mapping
dc.subjectgene expression
dc.subjectchromatin accessibility
dc.subjectmachine learning
dc.subjectdeep learning
dc.subjectQTL kaardistamine
dc.subjectgeeniekspressioon
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titlePredicting the molecular mechanisms of genetic variants
dc.typeThesisen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yarish_Computer_Science_2024.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format