A Grammar-Based Method for Instilling Empirical Dependency Structure in LLMs

dc.contributor.authorTorstensson, Olle
dc.contributor.authorHolmström, Oskar
dc.contributor.editorTrosterud, Trond
dc.contributor.editorWiechetek, Linda
dc.contributor.editorPirinen, Flammie
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-17T09:12:05Z
dc.date.available2025-02-17T09:12:05Z
dc.date.issued2025-03
dc.description.abstractWe investigate whether synthetic pretraining data generated from a formal grammar modeling syntactic dependencies can improve English language models. Building upon the structured pretraining data approach of Papadimitriou and Jurafsky (2023), we develop a grammar that more closely mirrors empirical dependency structures. Our results are negative – this type of pretraining significantly degrades model performance, with both our and their pretraining approach performing worse than no pretraining at all. We analyze potential explanations for these findings and discuss implications for future work on structured-data pretraining.
dc.identifier.urihttps://hdl.handle.net/10062/107152
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleA Grammar-Based Method for Instilling Empirical Dependency Structure in LLMs
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_cgfsnlp_1_7.pdf
Suurus:
206.09 KB
Formaat:
Adobe Portable Document Format