Normativity of scientific laws
Failid
Kuupäev
2013-07-01
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Abstrakt
Tavaliselt peetakse teadusseadusi ehk nö. loodusseadusi kirjeldavateks, looduses toimivaid korrapärasusi esitavaiks, vastandades neid õigusnormidele, mida peetakse eksplitsiitselt normatiivseiks, ühiskondlikku korda ettekirjutavaks. Selles töös kaitsen seisukohta, et (matemaatilised) loodusseadused on normatiivsed sarnaselt nagu õigusnormidki: nad kirjutavad ette tegevusi või tegevuste lõpptulemusi, asjade seise. Ma eristan kolme erinevat viisi, neist igaühel kaks tasandit, kuidas loodusseadused on normatiivsed. Esiteks, kontseptuaalne normatiivsus tähendab ettekirjutusi, kuidas tuleb maailmast mõelda või kõnelda. Üldisemal tasandil tähendab see analüütilisust ja selgust maailma ja tema omaduste käsitamisel, konkreetsemal tasandil eriteaduslikke mõisteid ja kujutlusi, mis kanduvad tavamõtlemisse nt. üldhariduse kaudu. Teiseks, episteemiline normatiivsus tähendab (täppis)teaduse eeskuju kindla teadmise saavutamisel. Teoreetilisel tasandil tähendab see matemaatilisust, praktilisel tasandil eksperimentaalset tegevust laboris, mille kaudu matemaatika ühitatakse materiaalse maailmaga. Kolmandaks, praktiline normatiivsus tähendab viise, kuidas laborivälise maailmaga tuleks ümber käia. Kitsamal tasandil tähendab see seadmete jm eriteaduste teadmistel põhinevate tehiste kujundamist ja tootmist, laiemal tasandil maailma ümberkujundamist vastavalt teaduslikule maailmapildile.
Ma oletan, et matemaatika ja eriti matemaatiliselt väljendatava korrapära normatiivsus tuleneb inimese vajadusest kindlustunde järele, mida ta püüab saavutada looduse ümberkujundamisega korrapäraseks selliselt, et tal oleks võimalikult hea kontroll maailmas toimuva üle. Matemaatika, matemaatilised seadused ja neil põhinev tehnoloogia võimaldavad maailma kujundamise tulemusi arvuliselt ette näha ning vähendada juhuslikkust ja sellest tulenevat ebakindlust ja määramatust.
Scientific laws or the so called laws of nature are usually regarded as descriptive, presenting regularities operating in nature, contrasting them to legal norms that are regarded as explicitly normative, prescribing social order. In this paper I defend the position that (mathematical) laws of nature are normative similarly to legal norms: they prescribe actions or end results of actions, states of art. I discern three different ways, each having two levels, in which laws of nature are normative. Firstly, conceptual normativity means prescriptions of how the world is to be thought or talked about. On the more general level, this means analyticity and clarity in treating the world and its properties, on the more concrete level – special scientific terms and visions that are transferred to common thinking e.g. through general education. Secondly, epistemic normativity means the standard of (exact) sciences for reaching certain knowledge. On the theoretical level, this means mathematicalness, on the practical level – experimental activity in laboratory, through which mathematics is connected to material reality. Thirdly, practical normativity means ways of how the world outside laboratory should be treated. On the narrower level, this means designing and producing apparatus and other artefacts based on the knowledge of special sciences, on the broader level – reshaping nature according to the scientific world picture. I surmise that normativity of mathematics and particularly of mathematically expressed orderliness stems from human need for certitude that he tries to achieve by rearranging nature so that she is orderly and that man would have control over her. Mathematics, mathematical laws and technology based on those enable numerically foresee the results of rearranging the world, and thus diminish randomness, and insecurity and uncertainty arising from it.
Scientific laws or the so called laws of nature are usually regarded as descriptive, presenting regularities operating in nature, contrasting them to legal norms that are regarded as explicitly normative, prescribing social order. In this paper I defend the position that (mathematical) laws of nature are normative similarly to legal norms: they prescribe actions or end results of actions, states of art. I discern three different ways, each having two levels, in which laws of nature are normative. Firstly, conceptual normativity means prescriptions of how the world is to be thought or talked about. On the more general level, this means analyticity and clarity in treating the world and its properties, on the more concrete level – special scientific terms and visions that are transferred to common thinking e.g. through general education. Secondly, epistemic normativity means the standard of (exact) sciences for reaching certain knowledge. On the theoretical level, this means mathematicalness, on the practical level – experimental activity in laboratory, through which mathematics is connected to material reality. Thirdly, practical normativity means ways of how the world outside laboratory should be treated. On the narrower level, this means designing and producing apparatus and other artefacts based on the knowledge of special sciences, on the broader level – reshaping nature according to the scientific world picture. I surmise that normativity of mathematics and particularly of mathematically expressed orderliness stems from human need for certitude that he tries to achieve by rearranging nature so that she is orderly and that man would have control over her. Mathematics, mathematical laws and technology based on those enable numerically foresee the results of rearranging the world, and thus diminish randomness, and insecurity and uncertainty arising from it.
Kirjeldus
Väitekirja elektrooniline versioon ei sisalda lisasid.
Märksõnad
teadusfilosoofia, loodusseadused, normatiivsus, philosophy of science, laws of nature, normativity, teadusfilosoofia, loodusseadused, normatiivsus, matemaatika, philosophy of science, laws of nature, normativity, mathematics