DNA regulatiivsete elementide parendatud otsing kasutades geneetilist algoritmi

dc.contributor.advisorTretyakov, Konstantinet
dc.contributor.authorStalnuhhin, Antonet
dc.contributor.otherTartu Ülikool. Matemaatika-informaatikateaduskondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2013-09-06T12:40:03Z
dc.date.available2013-09-06T12:40:03Z
dc.date.issued2007et
dc.description.abstractN/Aet
dc.description.abstractDetection of transcription factor binding sites is an important area of contemporary bioinformatics research. Most of the algorithms currently available for that task (e.g. SPEXS or MEME) perform pattern mining on strings, searching for overrepresented or conserved short DNA sequences and reporting the position weight matrices (PWMs), corresponding to the sites found. PWMs thus found can then be used to search for binding sites in other genes or to perform functional classification. However, the PWMs reported by SPEXS or MEME were not explicitly optimized for discriminative tasks and therefore can be suboptimal. In this thesis we examine a way to optimize these initial PWMs to perform better in gene classification using genetic algorithms. We used two measures of discriminative performance, hypergeometric p-value and ROC AUC and ran genetic algorithms to optimize them with respect to two datasets: one artificial, and one realistic. In two experiments out of four the p-value and the ROC AUC score could be significantly improved and we find this result very interesting.et
dc.identifier.urihttp://hdl.handle.net/10062/32863
dc.language.isoenet
dc.publisherTartu Ülikoolet
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleDNA regulatiivsete elementide parendatud otsing kasutades geneetilist algoritmiet
dc.title.alternativeGenetic Algorithm for the Improved Discovery of DNA Regulatory Elementset
dc.typeThesiset

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
772.71 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
extra.zip
Size:
6.09 MB
Format:
Compressed ZIP