Voices of Luxembourg: Tackling Dialect Diversity in a Low-Resource Setting

dc.contributor.authorHosseini-Kivanani, Nina
dc.contributor.authorSchommer, Christoph
dc.contributor.authorGilles, Peter
dc.contributor.editorTudor, Crina Madalina
dc.contributor.editorDebess, Iben Nyholm
dc.contributor.editorBruton, Micaella
dc.contributor.editorScalvini, Barbara
dc.contributor.editorIlinykh, Nikolai
dc.contributor.editorHoldt, Špela Arhar
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-14T10:42:17Z
dc.date.available2025-02-14T10:42:17Z
dc.date.issued2025-03
dc.description.abstractDialect classification is essential for preserving linguistic diversity, particularly in low-resource languages such as Luxembourgish. This study introduces one of the first systematic approaches to classifying Luxembourgish dialects, addressing phonetic, prosodic, and lexical variations across four major regions. We benchmarked multiple models, including state-of-the-art pre-trained speech models like Wav2Vec2, XLSR-Wav2Vec2, and Whisper, alongside traditional approaches such as Random Forest and CNN-LSTM. To overcome data limitations, we applied targeted data augmentation strategies and analyzed their impact on model performance. Our findings highlight the superior performance of CNN-Spectrogram and CNN-LSTM models while identifying the strengths and limitations of data augmentation. This work establishes foundational benchmarks and provides actionable insights for advancing dialectal NLP in Luxembourgish and other low-resource languages.
dc.description.urihttps://aclanthology.org/2025.resourceful-1.0/
dc.identifier.urihttps://hdl.handle.net/10062/107127
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleVoices of Luxembourg: Tackling Dialect Diversity in a Low-Resource Setting
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_resourceful_1_29.pdf
Suurus:
159.93 KB
Formaat:
Adobe Portable Document Format