A unified account of visual search using a computational model

dc.contributor.advisorVicente, Raul, juhendaja
dc.contributor.advisorAru, Jaan, juhendaja
dc.contributor.authorKhajuria, Tarun
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-11-06T13:37:40Z
dc.date.available2023-11-06T13:37:40Z
dc.date.issued2020
dc.description.abstractVisual Search is a task ubiquitously performed by humans in everyday life. In the laboratory, to understand more about this process, experiments have characterised the time that humans need to locate a particular target object amongst others. Based on this search time’s dependence on the number of objects in the image, it is believed that two kinds of search take place. Feature search, where the target pops-out of the search image and is instantly found using a parallel search mechanism, and conjunction search, with more complex objects where the search is serial and the search time increases with the number of objects. In this work, we use a computational model to propose a unified process that can result in feature or conjunction search characteristics depending on the precision of the attention guidance mechanism. We show that the search performance can be partly explained by the precision or capacity of the encoding of distinct features that is used to guide attention during the search process.et
dc.identifier.urihttps://hdl.handle.net/10062/94054
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVisual Searchet
dc.subjectAttentionet
dc.subjectComputational Neuroscienceet
dc.subjectDeep Learninget
dc.subjectConvolutional Neural Networkset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleA unified account of visual search using a computational modelet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
khajuria_computerscience_2020.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: