PIRLS Category-specific Question Generation for Reading Comprehension

dc.contributor.authorPoon, Yin
dc.contributor.authorWang, Qiong
dc.contributor.authorLee, John S. Y.
dc.contributor.authorLam, Yu Yan
dc.contributor.authorKai Wah Chu, Samuel
dc.contributor.editorMuñoz Sánchez, Ricardo
dc.contributor.editorAlfter, David
dc.contributor.editorVolodina, Elena
dc.contributor.editorKallas, Jelena
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-17T10:44:15Z
dc.date.available2025-02-17T10:44:15Z
dc.date.issued2025-03
dc.description.abstractAccording to the internationally recognized PIRLS (Progress in International Reading Literacy Study) assessment standards, reading comprehension questions should encompass all four comprehension processes: retrieval, inferencing, integrating and evaluation. This paper investigates whether Large Language Models can produce high-quality questions for each of these categories. Human assessment on a Chinese dataset shows that GPT-4o can generate usable and category-specific questions, ranging from 74% to 90% accuracy depending on the category.
dc.identifier.urihttps://hdl.handle.net/10062/107171
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePIRLS Category-specific Question Generation for Reading Comprehension
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nlp4call_1_6.pdf
Suurus:
706.41 KB
Formaat:
Adobe Portable Document Format