A Comparative Study of PEFT Methods for Python Code Generation
Kuupäev
2025-03
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
University of Tartu Library
Abstrakt
Fine-tuning language models incurs high costs in training, inference and storage. Parameter-efficient fine-tuning (PEFT) methods have emerged as a more cost-effective alternative to full fine-tuning. However, limited work has compared different PEFT approaches for tasks like code generation. In this study, we examine the effect of various PEFT training methods on model performance in the task of Python code generation. We fine-tune four model families, ranging from 124M to 7B parameters, using three PEFT approaches alongside standard full fine-tuning. Our findings reveal that the effectiveness of each PEFT method varies with the model size and the corpus used.