Novel anthracycline-loaded nanoparticles for precision cancer therapy
Date
2024-11-20
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Vähiravi on kompleksne valdkond, kus mitmekülgne lähenemine on võtmetähtsusega. Traditsioonilised ravimeetodid, nagu kirurgia ja kiiritusravi, on efektiivsed lokaalsete kasvajate ravimisel, kuid süsteemsed ravimeetodid, eriti keemiaravi, on hädavajalikud, et võidelda metastaseerunud vähiga. Antratsükliinid on ühed enimkasutatavad kasvajavastased ravimid. Antratsükliinide kõrvaltoimed (kardiotoksilisus, immunosupressioon ja seedetrakti häired) piiravad nende terapeutilist kasutamist annustes, mis oleksid piisavad maliigsete kollete likvideerimiseks. Uute antratsükliinide arendamine on oluline, et parandada nende terapeutilist efektiivsust ja ohutust.
Veel üheks lähenemisviisiks vähiravi efektiivsuse parandamisel on kasutada ravimite transpordivahendeid, nagu lipiid- ja polümeeriosakesed, võimaldamaks ravimite täpsemat ja kontrollitumat akumulatsiooni kasvajapaikmetes, vähendades samas nende kogust tervetes kudedes ja seeläbi süsteemset toksilisust. Nanokandjate kasutamine võimaldab terapeutilist ainet kaitsta kuni sihtpunkti jõudmiseni, parandades seeläbi ravimi lahustuvust ja biosaadavust. Nanokandjate afiinsus-suunamine kasvajarakkudesse sisenevate peptiidide (tumor-penetrating peptides, TPP) abil võimaldab veelgi suurendada vähiravi täpsust ja efektiivsust. Sellised peptiidid seonduvad selektiivselt kasvajarakkude pinnal ekspresseeritud retseptoritega, võimaldades seeläbi ravimi selektiivset akumulatsiooni soliidtuumorites ja suurendades seeläbi ravi efektiivsust.
Käesolev doktoritöö keskendus täppisvähiravi prekliinilisele arendamisele. Optimeeriti ja valideeriti kahte tüüpi nanoosakesi: niosoome (NSV) ja polümeersoome (PS), eesmärgiga suurendada ravimi akumulatsiooni spetsiifiliste retseptorite ekspressiooniga kasvajarakkudes. Põhjalikud in vitro ja in vivo uuringud viidi läbi, et hinnata TPP-ga suunatud osakeste tsütotoksilisust ja ravi efektiivsust, olles laaditud kas doksorubitsiini (DOX)-i või UTO-ga. Lisaks uuriti UTO-ga laetud polümeersoome koos tuumori veresoonte kollapsi põhjustava ühendiga CA4P ja TPP iRGD sünergilisi mõjusid peritoneaalne kartsinoomatoosi loommudelites. Kokkuvõttes näitab see uurimus, kuidas innovaatilised ravimite manustamise strateegiad võivad oluliselt parandada vähiravi efektiivsust ja ohutust. Nanotehnoloogia ja sihitud ravimite manustamise võtted avavad uusi võimalusi isikupärastatud ja tõhusate vähiravimite väljatöötamiseks, mis võivad aidata parandada patsientide elukvaliteeti ja elulemust.
Cancer treatment demands a multifaceted approach. While traditional methods like surgery and radiation therapies tackle localized tumors effectively, systemic treatments, especially chemotherapy, are crucial for combating metastatic spread. Anthracycline drugs are widely used for their broad efficacy, but their utility is limited by adverse effects like cardiotoxicity and bone marrow depression. Therefore, developing new anthracyclines with improved safety profiles is imperative. Another approach involves drug delivery vehicles, such as lipid and polymer particles, allowing for precise and controlled drug administration to tumor sites, thus reducing systemic toxicity. These carriers shield therapeutic agents until reaching their target, enhancing drug solubility and availability. Targeted drug delivery methods, particularly using tumor-penetrating peptides (TPPs), enhance treatment accuracy and effectiveness while minimizing side effects on healthy tissues. Such peptides selectively bind to receptors overexpressed on cancer cells, enabling precise drug delivery to tumors, thereby improving treatment outcomes. This doctoral thesis focuses on the preclinical development and evaluation of a novel precision cancer therapy, particularly the anthracycline prodrug Utorubicin (UTO). Two types of nanovesicles, niosomes (NSVs), and polymersomes (PS), were optimized and validated to enhance drug accumulation in tumor cells expressing specific receptors. Comprehensive in vitro and in vivo studies evaluated the cytotoxicity and treatment efficacy of TPP-targeted particles loaded with DOX or UTO. Furthermore, synergistic effects of UTO-PS with vascular-disrupting agent CA4P and TPP iRGD were investigated in treating mice with peritoneal carcinomatosis, highlighting significantly improved therapeutic outcomes and safety potential. Overall, this study demonstrates how innovative drug delivery strategies can significantly enhance cancer treatment efficacy and safety. Nanotechnology and targeted drug delivery approaches offer new avenues for developing personalized and effective cancer therapies, potentially improving patient quality of life and survival rates.
Cancer treatment demands a multifaceted approach. While traditional methods like surgery and radiation therapies tackle localized tumors effectively, systemic treatments, especially chemotherapy, are crucial for combating metastatic spread. Anthracycline drugs are widely used for their broad efficacy, but their utility is limited by adverse effects like cardiotoxicity and bone marrow depression. Therefore, developing new anthracyclines with improved safety profiles is imperative. Another approach involves drug delivery vehicles, such as lipid and polymer particles, allowing for precise and controlled drug administration to tumor sites, thus reducing systemic toxicity. These carriers shield therapeutic agents until reaching their target, enhancing drug solubility and availability. Targeted drug delivery methods, particularly using tumor-penetrating peptides (TPPs), enhance treatment accuracy and effectiveness while minimizing side effects on healthy tissues. Such peptides selectively bind to receptors overexpressed on cancer cells, enabling precise drug delivery to tumors, thereby improving treatment outcomes. This doctoral thesis focuses on the preclinical development and evaluation of a novel precision cancer therapy, particularly the anthracycline prodrug Utorubicin (UTO). Two types of nanovesicles, niosomes (NSVs), and polymersomes (PS), were optimized and validated to enhance drug accumulation in tumor cells expressing specific receptors. Comprehensive in vitro and in vivo studies evaluated the cytotoxicity and treatment efficacy of TPP-targeted particles loaded with DOX or UTO. Furthermore, synergistic effects of UTO-PS with vascular-disrupting agent CA4P and TPP iRGD were investigated in treating mice with peritoneal carcinomatosis, highlighting significantly improved therapeutic outcomes and safety potential. Overall, this study demonstrates how innovative drug delivery strategies can significantly enhance cancer treatment efficacy and safety. Nanotechnology and targeted drug delivery approaches offer new avenues for developing personalized and effective cancer therapies, potentially improving patient quality of life and survival rates.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone