Automated segmentation of various features of glioblastoma in histopathological images
dc.contributor.author | Sedykh, Ekaterina | |
dc.date.accessioned | 2022-07-01T07:48:47Z | |
dc.date.available | 2022-07-01T07:48:47Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/10062/82990 | |
dc.language.iso | eng | et |
dc.rights | embargoedAccess | et |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | deep learning | et |
dc.subject | glioblastoma | et |
dc.subject | digital pathology | et |
dc.subject | whole slide images | et |
dc.subject | segmentation | et |
dc.title | Automated segmentation of various features of glioblastoma in histopathological images | et |
dc.type | Thesis | et |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Ekaterina_Sedykh_2022_bak.pdf
- Size:
- 25.69 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.67 KB
- Format:
- Item-specific license agreed upon to submission
- Description: