Quantification of Biodiversity from Historical Survey Text with LLM-based Best-Worst-Scaling

dc.contributor.authorHaider, Thomas
dc.contributor.authorPerschl, Tobias
dc.contributor.authorRehbein, Malte
dc.contributor.editorBasile, Valerio
dc.contributor.editorBosco, Cristina
dc.contributor.editorGrasso, Francesca
dc.contributor.editorIbrahim, Muhammad Okky
dc.contributor.editorSkeppstedt, Maria
dc.contributor.editorStede, Manfred
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-17T12:02:09Z
dc.date.available2025-02-17T12:02:09Z
dc.date.issued2025-03
dc.description.abstractIn this paper, we evaluate methods to determine biodiversity via quantity estimation from historical survey text. To that end, we formulate classification tasks and finally show that this problem can be successfully framed as regression based on best-worst-scaling with LLMs. We find that this approach is more cost effective and similarly robust to a fine-grained multi-class approach, allowing automated quantity estimation across species.
dc.identifier.isbn978-9908-53-114-4
dc.identifier.urihttps://hdl.handle.net/10062/107183
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleQuantification of Biodiversity from Historical Survey Text with LLM-based Best-Worst-Scaling
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nlp4ecology_1_13.pdf
Suurus:
3.32 MB
Formaat:
Adobe Portable Document Format