Smart Traffic Control Using Optimised Convolutional Neural Network
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Tartu Ülikool
Abstract
In English: The state-of-the-art in image object detection is in convolutional neural networks, which is a
computationally expensive base to build on. To run accurate detection in an embedded device,
additional optimization is required if there is a need to run it real-time on each frame of a video.
This thesis details work done in the development of a smart pedestrian crosswalk: an Internet of
Things enabled embedded platform for traffic control. By fine-tuning an individual neural network
for each SPC post, it was possible to significantly boost accuracy in a fast, low-accuracy
CNN. This was accomplished by taking advantage of the low variation in possible input images,
being drawn from only 3 cameras per post. The improvement was from 33.1% mAP in general
context images and 80 classes to 60.7% mAP on solely traffic images and seven traffic-relevant
classes.
Eesti keeles: Uusimad objekti tuvastus meetodid kasutavad oma töös konvuleerivaid närvivõrke, mis arvutuslikust
küljest on ressursiahned. Täpsete tuvastusmudelite jooksutamine manussüsteemides
vajab palju optimeerimist, eriti kui seade peab toimima reaalajas. Käesolev töö kirjeldab targa
ülekäiguraja teemärgi loomist: nutiseade, mis on mõeldud liikluse juhtimiseks. Seadistades iga
SPC posti eraldi närvivõrku, oli võimalik märkimisväärselt tõsta kiire ja ebatäpse närvivõrgu
selgust. See saavutati kasutades ära kolmest kaamerast tulevate sisendpiltide minimaalset varieeruvust.
Algoritmi täpsust parandati 80 klassilise üldnärvivõrgu 33.1% mAP pealt 60.7% mAP
peale, rakendades ainult liiklusega seotud pilte koos seitsme erineva teemakohase klassiga.
Description
Keywords
CNN, tehisnärvivõrk, nutistu, autonoomne, tehisintellekt, neural networks, IoT, autonomous, AI