Muusika toonimise kasutamine muusika žanrite klassifitseerimise mudelites

Kuupäev

2023

Ajakirja pealkiri

Ajakirja ISSN

Köite pealkiri

Kirjastaja

Tartu Ülikool

Abstrakt

Käesoleva magistritöö raames teostatakse uurimus leidmaks, kuidas muusikafailide toonimised mõjuvad muusika žanrite klassifitseerimiste mudelite täpsusele. Püstitatud ülesande lahendamiseks võrreldakse toonimata andmestikuga etalon mudeli täpsust erinevate toonitud andmestike abil loodud mudelite täpsustega. Töö sisendiks on GTZAN muusika andmestik ja muusika toonimisi uuritakse MFCC koefitsientidel põhinevatel muusika žanrite klassifitseerimise mudelitel. Töö tulemusel selgus, et toonitud muusikaga rikastatud andmestikel treenitud muusika žanri klassifitseerimise mudelid on keskmiselt täpsemad kui ainult toonimata muusika muusikal treenitud mudelid.

Kirjeldus

Märksõnad

Andmeanalüüs, andmestike rikastamine, muusika toonimine, GTZAN, MFCC

Viide