Development of pharmaceutical quench-cooled molten and melt-electrospun solid dispersions for poorly water-soluble indomethacin
Date
2018-09-25
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Kirjanduse andmetel 40% turustatud ja 75% väljatöötamise või tootmise faasis olevatest raviainetest klassifitseeritakse vees halvasti lahustuvateks. Uudsed ravimvormide disaini ja valmistamise strateegiad, abiained ja tootmisemeetodid võimaldavad parandada raviainete vesilahustuvust, lahustumiskiirust ja seega ka biosaadavust organismis. Tahked dispersioonid on üks traditsiooniline viis/tehnoloogia, kuidas valmistada vees halvasti lahustuvatest raviainetest uusi ravimvorme ning ravimpreparaate, ning selle tehnoloogia eelised on hästi dokumenteeritud ning turustatud ravimite arv antud tehnoloogiaga järjest kasvab.
Käesolevas doktoritöös valmistati erinevate meetoditega amorfsed tahked dispersioonid Soluplus®-i ja ksülitooliga parandamaks raviaine (indometatsiini) lahustumiskiirust ja tema amorfse vormi stabiilsust. Tahked dispersioonid valmistati sulami kiirjahutamise meetodil. Uudse lähenemisena kasutati tahkete dispersioonide valmistamiseks sulami elektrospinnimise meetodit, mida võib käsitleda traditsioonilise sulami kiirjahutamise meetodi edasiarendusena. Uuriti põhjalikult valmistatud pulbrite ja sulami elektrospinnimise teel saadud fiibrite füsikokeemilisi omadusi. Peamiseks uurimisküsimuseks oli välja selgitada muutused raviaine lahustumiskiiruses ja füsikokeemilises stabiilsuses võrreldes raviaine käitumist puhta raviaine ning raviaine ning abiaine(te) füüsikaliste segudega.
Sulami kiirjahutamise teel saadud indometatsiini segud erinevate abiainetega näitasid olulisi erinevusi molekulaarse, osakese ja pulbri taseme omadustes, mis oluliselt mõjutasid ka nende segude füüsikalist stabiilsust. In vitro dissolutsioonikatsete tulemused näitasid, et tahked dispersioonid ja füüsikalised segud omavad abiainest sõltuvat raviaine vabanemis- ja lahustumisprotsessi pH 6.8 juures. Kiireim raviaine vabanemine ja lahustumine toimus raviaine tahketest dispersioonidest koos Soluplus®-ga, mis tuli eeskätt nende segude paremast märgumisest ja indometatsiini välja kristalliseerimise inhibeerimisest. Ksülitool on vees kergesti lahustuv polüalkohol, parandades lahustumiskiirust läbi parema märgumisprotsessi ja hüdrofiilse vesikeskkonna. Sulami elektrospinnimise teel valmistatud raviainega fiibrid olid füüsikaliselt stabiilsed ja tagasid kiire raviaine vabanemise. Kokkuvõtvalt, sulami elektrospinnimist võib käsitleda alternatiivina traditsioonilistele või modifitseeritud tahkete dispersioonide valmistamise meetoditele nagu sulami kiirjahutamine või kuumsulatus-ekstrusioon parandamaks raviainete lahustumiskiirust ja seega ka vees halvasti lahustuvate raviainete biosaadavust.
It has been reported that 40% of marketed and 75% of drugs under the development or in the product pipeline are classified as poorly water soluble. The adoption of new formulation strategies, excipients and manufacturing methods will foster the understanding of how to improve the aqueous solubility and dissolution rate of drugs, and hence their bioavailability. The commonly used formulation approaches for poorly water-soluble drugs include solid dispersions, and to date the advantages of solid dispersions over other strategies are recognized and the number of commercially available such drug products are steadily increasing. In the present PhD research work, amorphous solid dispersions were prepared with Soluplus® and xylitol with different methods to improve the dissolution rate and stabilize an amorphous drug (indomethacin). A common approach, quench cooling of the melt, was used for the preparation of solid dispersions. In addition to quench cooling, melt-electrospinning was used which can be regarded as another modification of traditional quench cooling of the melt method for solid dispersion preparation. Physicochemical characteristics and drug release of quench cooled mixtures and melt-spun fibers with different carriers were investigated. The melt-electrospun fibers with their unique properties were investigated, and the key question was, whether they could accelerate the dissolution rate of the drug and improve its physicochemical stability. The quench cooled molten mixtures of indomethacin with two different matrix formers exhibited significant differences at the molecular level, in particle properties, bulk powder behavior and stability. The present solid dispersions and physical mixtures showed a carrier-controlled drug release mechanism at pH 6.8. The enhanced drug dissolution from the solid dispersions with Soluplus® was due to improved wetting and inhibited crystallization of indomethacin. Xylitol as a freely water-soluble polyalcohol advanced the dissolution rate of indomethacin most likely through improving the wetting properties and providing the hydrophilic environment in the solution. It was shown that the produced melt-electrospun fibers of a drug were physically stable and presented immediate drug release. In conclusion, the melt-electrospun fibers could be an alternative strategy to traditional or modified quench cooling and hot-melt extrusion in improving the dissolution rate, and consequently the oral bioavailability of poorly water-soluble drugs.
It has been reported that 40% of marketed and 75% of drugs under the development or in the product pipeline are classified as poorly water soluble. The adoption of new formulation strategies, excipients and manufacturing methods will foster the understanding of how to improve the aqueous solubility and dissolution rate of drugs, and hence their bioavailability. The commonly used formulation approaches for poorly water-soluble drugs include solid dispersions, and to date the advantages of solid dispersions over other strategies are recognized and the number of commercially available such drug products are steadily increasing. In the present PhD research work, amorphous solid dispersions were prepared with Soluplus® and xylitol with different methods to improve the dissolution rate and stabilize an amorphous drug (indomethacin). A common approach, quench cooling of the melt, was used for the preparation of solid dispersions. In addition to quench cooling, melt-electrospinning was used which can be regarded as another modification of traditional quench cooling of the melt method for solid dispersion preparation. Physicochemical characteristics and drug release of quench cooled mixtures and melt-spun fibers with different carriers were investigated. The melt-electrospun fibers with their unique properties were investigated, and the key question was, whether they could accelerate the dissolution rate of the drug and improve its physicochemical stability. The quench cooled molten mixtures of indomethacin with two different matrix formers exhibited significant differences at the molecular level, in particle properties, bulk powder behavior and stability. The present solid dispersions and physical mixtures showed a carrier-controlled drug release mechanism at pH 6.8. The enhanced drug dissolution from the solid dispersions with Soluplus® was due to improved wetting and inhibited crystallization of indomethacin. Xylitol as a freely water-soluble polyalcohol advanced the dissolution rate of indomethacin most likely through improving the wetting properties and providing the hydrophilic environment in the solution. It was shown that the produced melt-electrospun fibers of a drug were physically stable and presented immediate drug release. In conclusion, the melt-electrospun fibers could be an alternative strategy to traditional or modified quench cooling and hot-melt extrusion in improving the dissolution rate, and consequently the oral bioavailability of poorly water-soluble drugs.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Keywords
drug design, indomethacin, solubility, solid drugs, pharmaceutical technology