Collaborative filtering recommendation algo-rithms performance on an implicit feedback da-taset
Kuupäev
2021
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
Antud töö eesmärgiks on valida ja implementeerida soovitussüsteem USA-s opereerivale võr-gumängude platvormile. Süsteemi eripärasid ja olemasolevaid andmeid arvestades valiti mudelipõhine lähenemine süsteemi koostamiseks. Implementeeriti kaks mudelit: Alternating Least Squares (ALS) ja Bayesian Personalized Ranking (BPR), mida treeniti süsteemist saadud andmete põhjal. Mudelite väljundi hindamiseks kasutati AUC-d ja mediaantäpsust. Tulemused näitasid, et mudelid töötasid koguandmetel identse täpsusega, kuid uute mängijate hindamisel sai parema tulemuse ALS.
Kirjeldus
Märksõnad
Soovitusüsteem, arvamuspõhine filterdamine, maatriksi faktoriseerimine, ALS, BPR