A Competitive Scenario Forecaster using XGBoost and Gaussian Copula

dc.contributor.advisorShahroudi, Novin, juhendaja
dc.contributor.advisorKull, Meelis, juhendaja
dc.contributor.authorKolomiiets, Denys
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-10-30T12:47:34Z
dc.date.available2023-10-30T12:47:34Z
dc.date.issued2023
dc.description.abstractIn recent years scenario forecasting has been explored and developed by multiple authors. It is a useful technique for setting such as renewable energy production, which is extremely important for a society transitioning from fossil fuel energy generation. Currently, one of the methods to approach the task of scenario forecasting are generative models. The primary goal of this thesis is to develop an approach that outperforms the current best model, using the decision tree model method. This work also discusses possible improvements for decision tree models in scenario forecasting setting. Our approach has surpassed the performance of generative models, making it a solid new baseline for future researchers to beat.et
dc.identifier.urihttps://hdl.handle.net/10062/93846
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectXGBoostet
dc.subjectGaussian Copulaet
dc.subjectQuantile forecastinget
dc.subjectScenario forecastinget
dc.subjectEnergy forecastinget
dc.subjectTime serieset
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleA Competitive Scenario Forecaster using XGBoost and Gaussian Copulaet
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
Kolomiiets_ComputerScience_2023.pdf
Suurus:
4.54 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Pisipilt ei ole saadaval
Nimi:
MSthesis_Main.zip
Suurus:
49.28 MB
Formaat:
Compressed ZIP
Kirjeldus:
Lisad

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: