Federated Meta-Learning for Low-Resource Translation of Kirundi

dc.contributor.authorSang, Kyle Rui
dc.contributor.authorRabbani, Tahseen
dc.contributor.authorZhou, Tianyi
dc.contributor.editorTudor, Crina Madalina
dc.contributor.editorDebess, Iben Nyholm
dc.contributor.editorBruton, Micaella
dc.contributor.editorScalvini, Barbara
dc.contributor.editorIlinykh, Nikolai
dc.contributor.editorHoldt, Špela Arhar
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-14T10:49:25Z
dc.date.available2025-02-14T10:49:25Z
dc.date.issued2025-03
dc.description.abstractIn this work, we reframe multilingual neural machine translation (NMT) as a federated meta-learning problem and introduce a translation dataset for the low-resource Kirundi language. We aggregate machine translation models () locally trained on varying (but related) source languages to produce a global meta-model that encodes abstract representations of key semantic structures relevant to the parent languages. We then use the Reptile algorithm and Optuna fine-tuning to fit the global model onto a target language. The target language may live outside the subset of parent languages (such as closely-related dialects or sibling languages), which is particularly useful for languages with limitedly available sentence pairs. We first develop a novel dataset of Kirundi-English sentence pairs curated from Biblical translation. We then demonstrate that a federated learning approach can produce a tiny 4.8M Kirundi translation model and a stronger NLLB-600M model which performs well on both our Biblical corpus and the FLORES-200 Kirundi corpus.
dc.description.urihttps://aclanthology.org/2025.resourceful-1.0/
dc.identifier.urihttps://hdl.handle.net/10062/107131
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleFederated Meta-Learning for Low-Resource Translation of Kirundi
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_resourceful_1_34.pdf
Suurus:
246.35 KB
Formaat:
Adobe Portable Document Format