Better Benchmarking LLMs for Zero-Shot Dependency Parsing

dc.contributor.authorEzquerro, Ana
dc.contributor.authorGómez-Rodríguez, Carlos
dc.contributor.authorVilares, David
dc.contributor.editorJohansson, Richard
dc.contributor.editorStymne, Sara
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-17T14:10:46Z
dc.date.available2025-02-17T14:10:46Z
dc.date.issued2025-03
dc.description.abstractWhile LLMs excel in zero-shot tasks, their performance in linguistic challenges like syntactic parsing has been less scrutinized. This paper studies state-of-the-art open-weight LLMs on the task by comparing them to baselines that do not have access to the input sentence, including baselines that have not been used in this context such as random projective trees or optimal linear arrangements. The results show that most of the tested LLMs cannot outperform the best uninformed baselines, with only the newest and largest versions of LLaMA doing so for most languages, and still achieving rather low performance. Thus, accurate zero-shot syntactic parsing is not forthcoming with open LLMs.
dc.identifier.urihttps://hdl.handle.net/10062/107204
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofseriesNEALT Proceedings Series, No. 57
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleBetter Benchmarking LLMs for Zero-Shot Dependency Parsing
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nodalida_1_13.pdf
Suurus:
1.77 MB
Formaat:
Adobe Portable Document Format