Muusika saate genereerimine tingimusliku vastandgeneratiivse närvivõrgu abil

dc.contributor.advisorAljanaki, Anna, juhendaja
dc.contributor.authorVästrik, Priidik Meelo
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-10-07T07:18:21Z
dc.date.available2024-10-07T07:18:21Z
dc.date.issued2024
dc.description.abstractGeneration of good quality music accompaniment is very useful for composers and music producers. Generative artificial neural networks are booming and there is recently an increasing amount of music generation models published. The aim of this Bachelor’s thesis is to generate music accompaniment using spectrograms and an image translation model Pix2Pix. Experiments are con-ducted to generate different types of accompaniments. The best results are achieved when gener-ating the drum stem. It can be seen from the results that generative adversarial networks’ outputs contain unnatural artifacts that affect the results badly. Preventing this requires lots of finetuning.
dc.identifier.urihttps://hdl.handle.net/10062/105208
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectMuusika
dc.subjectgenereerimine
dc.subjectnärvivõrgud
dc.subjectpilditöötlus
dc.subjectMusic
dc.subjectgeneration
dc.subjectneural networks
dc.subjectimage translation
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleMuusika saate genereerimine tingimusliku vastandgeneratiivse närvivõrgu abil
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vastrik_Informaatika_2024.pdf
Size:
872.86 KB
Format:
Adobe Portable Document Format