Puuduvate andmete imputeerimine depressiooni hindavas küsimustikus

Kuupäev

2024

Ajakirja pealkiri

Ajakirja ISSN

Köite pealkiri

Kirjastaja

Tartu Ülikool

Abstrakt

Andmete puudumine on oluline probleem andmestike analüüsil. Statistilise analüüsi käigus on sellest võimalik üle saada kasutades puuduvate andmete asendamist ehk imputeerimist. Imputeerimise võimalikuks puuduseks on andmeanalüüsi tulemuste korrektsus. Käesolev uurimistöö annab ülevaate erinevatest imputeerimismeetoditest ning nende rakendamisest puuduvaid andmeid sisaldavate depressiooniküsimustike analüüsil. Uurimistöö andmestiku moodustavad 87 042 TÜ Eesti geenivaramu geenidoonori vastused emotsionaalse enesetunde küsimustiku (EEK2) depressiooni alaskaala kaheksale küsimusele. Keskmiselt puudub 1,432% andmetest. Analüüsi eesmärgiks on hinnata, kas imputeerimismeetodi valik mõjutab depressiooniskoori seoseid depressioonidiagnoosiga. Koostatud ennustusmudelite põhjal võrreldakse kolme imputeerimismeetodit: listiviisiline kustutamine, keskmisega imputeerimine ning mitmene imputeerimine. Erinevaid imputeerimismeetodeid kasutades arvutatakse depressiooniskoor, mis kaasatakse kovariaadina ennustusmudelisse. Erinevatele ennustusmudelitele on leitud depressiooniskoorile šansside suhe ning 95% usaldusintervall. Nende statistikute võrdlemisel selgub, et nende kolme imputeerimismeetodi kasutamisel on depressiooniskoori seosed depressioonidiagnoosiga sarnased.

Kirjeldus

Märksõnad

mitmene imputeerimine, keskmisega imputeerimine, listiviisiline kustutamine, imputeerimismeetodid, puuduvad andmed, multiple imputation, mean imputation, listwise deletion, imputation methods, missing data

Viide