Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell

dc.contributor.authorScalvini, Barbara
dc.contributor.authorSimonsen, Annika
dc.contributor.authorDebess, Iben Nyholm
dc.contributor.authorEinarsson, Hafsteinn
dc.contributor.editorJohansson, Richard
dc.contributor.editorStymne, Sara
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-19T08:21:53Z
dc.date.available2025-02-19T08:21:53Z
dc.date.issued2025-03
dc.description.abstractThis study evaluates GPT-4's English-to-Faroese translation capabilities, comparing it with multilingual models on FLORES-200 and Sprotin datasets. We propose a prompt optimization strategy using Semantic Textual Similarity (STS) to improve translation quality. Human evaluation confirms the effectiveness of STS-based few-shot example selection, though automated metrics fail to capture these improvements. Our findings advance LLM applications for low-resource language translation while highlighting the need for better evaluation methods in this context.
dc.identifier.urihttps://hdl.handle.net/10062/107256
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofseriesNEALT Proceedings Series, No. 57
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titlePrompt Engineering Enhances Faroese MT, but Only Humans Can Tell
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nodalida_1_63.pdf
Suurus:
808.05 KB
Formaat:
Adobe Portable Document Format