Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell
dc.contributor.author | Scalvini, Barbara | |
dc.contributor.author | Simonsen, Annika | |
dc.contributor.author | Debess, Iben Nyholm | |
dc.contributor.author | Einarsson, Hafsteinn | |
dc.contributor.editor | Johansson, Richard | |
dc.contributor.editor | Stymne, Sara | |
dc.coverage.spatial | Tallinn, Estonia | |
dc.date.accessioned | 2025-02-19T08:21:53Z | |
dc.date.available | 2025-02-19T08:21:53Z | |
dc.date.issued | 2025-03 | |
dc.description.abstract | This study evaluates GPT-4's English-to-Faroese translation capabilities, comparing it with multilingual models on FLORES-200 and Sprotin datasets. We propose a prompt optimization strategy using Semantic Textual Similarity (STS) to improve translation quality. Human evaluation confirms the effectiveness of STS-based few-shot example selection, though automated metrics fail to capture these improvements. Our findings advance LLM applications for low-resource language translation while highlighting the need for better evaluation methods in this context. | |
dc.identifier.uri | https://hdl.handle.net/10062/107256 | |
dc.language.iso | en | |
dc.publisher | University of Tartu Library | |
dc.relation.ispartofseries | NEALT Proceedings Series, No. 57 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Prompt Engineering Enhances Faroese MT, but Only Humans Can Tell | |
dc.type | Article |
Failid
Originaal pakett
1 - 1 1