Resource optimization with DRL-driven real time service placement strategy in Edge-Cloud continuum

dc.contributor.advisorDehury, Chinmaya Kumar, juhendaja
dc.contributor.authorAbbasov, Jeyhun
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-10-10T13:03:04Z
dc.date.available2024-10-10T13:03:04Z
dc.date.issued2023
dc.description.abstractAsjade Interneti (IoT) seadmete kasv ja vajadus andmeintensiivsete rakenduste järele on viinud Edge-Fog-Cloud arhitektuuri, mida tuntakse Edge-Cloud kontinuums. Pilvandmetöötlust kasutatakse suurte andmehulkade haldamiseks, mida IoT seadmed toodavad. Üks suuremaid pilvandmetöötluse piiranguid on võrgu latentsus. Nende piirangute tõttu on kasutusele võetud Uduandmetöötlus. Uduandmetöötlus pakub reaalajas teenuseid ja säästab võrgu ressursse. Siiski on uduandmetöötlusel võrreldes pilvandmetöötlusega madalamad ressursimahtude võimalused. Servandmetö ötlus on Uduandmetöötluse laiendus, kus andmeid töödeldakse lähemal allikale. Meie uuringus esitleme SüvaTugevusõppe (DRL) reaalajas teenuste jaotuse lahendust, mis ei ohusta teenuste kvaliteeti (QoS) Edge-Cloud kontinuums. Teenuseid pakuvad Udu- ja Pilvikeskkonnad. Kasutajalt saabuv päring lõigatakse Edge’is ja jaotatakse Udu- ja Pilvikeskkondade vahel, kasutades DRL-i. Pakutav DRL algoritm on rakendatud ja hinnatud selle edukuse määra, teenusepäringu lõikude jaotuse jms osas. Lisaks uurib uuring kolme erineva andmeintensiivse rakenduse keerulist dünaamikat, paljastades teadmisi nende jõudlusest ja ressursside kasutamisest Edge-Cloud kontinuums.
dc.identifier.urihttps://hdl.handle.net/10062/105308
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectPilvandmetöötlus
dc.subjectUduarvutus
dc.subjectServandmetöötlus
dc.subjectNutikas Värav
dc.subjectSügav Õpetamisreinforcement
dc.subjectTeenuse Tarnimine
dc.subjectTeenuse Jaotus
dc.subject.othermagistritöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleResource optimization with DRL-driven real time service placement strategy in Edge-Cloud continuum
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Jeyhun_Abbasov_MS_Thesis.pdf
Suurus:
4.43 MB
Formaat:
Adobe Portable Document Format