Biocompatible ionic electromechanically active polymer actuator based on biopolymers and non-toxic ionic liquids
Date
2021-04-26
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Edendades inimkonna tehnoloogilist progressi ning olles samas loodussäästlikud, peame välja töötama lahendused, mis ainult ei täida funktsiooni, vaid ei kehtesta ka liigset koormat loodusele. Pehmed täiturid on kasulikud biomeditsiinilistes rakendustes nende madalpingetarbimise ja mitteinvasiivse liikumise tõttu. Elektrolüütide ehk ioonsete vedelike, toksilisus materjalis, mis on vajalikud pehmete polümeeride täiturmootori liigutamiseks, on täiturite kasutusvõimalusi piiranud. Üks viis selle piirangu ületamiseks on kasutada elektrolüütidena koliin ioonseid vedelikke. Selline lähenemine võimaldaks saavutada täielikult toimiva bioühilduvat pehmet polümeertäituri.
Bioühilduv pehme polümeertäitur saavutati pärast järgmisi toiminguid. Esiteks testiti üksikuid koliin ioonseid vedelikke mitmete bakteritüvede ja rakuliini peal, mida kõiki on toksikoloogia uuringutes laialdaselt kasutatud. Teiseks prooviti koliin ioonseid vedelikke kombineerida segudeks, millel on madalam sulamistemperatuur kui üksikutel komponentidel. See lihtsustab nende kasutamist madala temperatuuriga keskkonnas. Täielikult bioühilduv pehme polümeertäitur saavutati lõpuks kõikide bioühilduvate komponentide kombineerimisega ning täituri elektromehaaniliste ja toksikoloogiliste omaduste põhjaliku testimisega.
Sünteesitud koliin ioonsed vedelikud olid kõikide testitud katseorganismide suhtes ohutud. Peamiseks toksilisust mõjutavaks teguriks oli toitelahuse pH muutus. Koliin ioonsete vedelike segamisel tuvastati viis kahekomponendilist segu, millel on madalam sulamistemperatuur kui nende üksikutel komponentidel. Sulamispunkti languse hulk sõltus üksikute komponentide molekulaarsest kujust. Valmistatud bioühilduv täitur ületas oma võimekuselt võrdluseks valitud täiturit, mis oli valmistatud laiemalt kasutust leiduvatest materjalidest. Samuti kinnitati, et bioühilduv täitur tervikuna ei ohusta kokkupuutel elusorganisme.
For the conservation of earth, while keeping up the technological progress of humanity, we need to come up with solutions that not only fill a function, but also do not impose a penalty on nature. Soft actuators are useful in biomedical applications because of their low voltage consumption and non-invasive movement. The toxicity of the electrolytes in the material, called ionic liquids, necessary to make the soft polymer actuator move, has limited their applications. One way to overcome this limitation, is to swap the toxic components for choline ionic liquids. This approach would make it possible to achieve a fully functioning biofriendly soft polymer actuator. The biofriendly soft polymer actuator was achieved after the following research steps. First, the individual choline ionic liquids were tested against several bacterial strains and a human cell-line, which are all widely used in toxicology studies. Second, the choline ionic liquids were attempted to be combined into mixtures that have a lower melting point than the individual components. This makes them easy to use in low temperature environments. The fully biofriendly soft polymer actuator was finally achieved by combining the biofriendly components and thoroughly testing its electromechanical and toxicological properties. The synthesized choline ionic liquids were all harmless towards the selected test organisms. Moreover, the main factor influencing the toxicity, was the change in feeding solution pH. By mixing the choline ionic liquids five two-component mixtures were identified that have a lower melting point than their individual components. The amount of melting point depression depended on the molecular shape of the individual components. Lastly, the biofriendly soft polymer actuator outperformed the comparison made from more widely used soft polymer actuator materials. It was also confirmed that the biofriendly actuator as a whole was suitable for contact with living organisms.
For the conservation of earth, while keeping up the technological progress of humanity, we need to come up with solutions that not only fill a function, but also do not impose a penalty on nature. Soft actuators are useful in biomedical applications because of their low voltage consumption and non-invasive movement. The toxicity of the electrolytes in the material, called ionic liquids, necessary to make the soft polymer actuator move, has limited their applications. One way to overcome this limitation, is to swap the toxic components for choline ionic liquids. This approach would make it possible to achieve a fully functioning biofriendly soft polymer actuator. The biofriendly soft polymer actuator was achieved after the following research steps. First, the individual choline ionic liquids were tested against several bacterial strains and a human cell-line, which are all widely used in toxicology studies. Second, the choline ionic liquids were attempted to be combined into mixtures that have a lower melting point than the individual components. This makes them easy to use in low temperature environments. The fully biofriendly soft polymer actuator was finally achieved by combining the biofriendly components and thoroughly testing its electromechanical and toxicological properties. The synthesized choline ionic liquids were all harmless towards the selected test organisms. Moreover, the main factor influencing the toxicity, was the change in feeding solution pH. By mixing the choline ionic liquids five two-component mixtures were identified that have a lower melting point than their individual components. The amount of melting point depression depended on the molecular shape of the individual components. Lastly, the biofriendly soft polymer actuator outperformed the comparison made from more widely used soft polymer actuator materials. It was also confirmed that the biofriendly actuator as a whole was suitable for contact with living organisms.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Keywords
biopolymers, ionic liquids, choline