Early warning system for financial crisis: application of random forest

dc.contributor.advisorEratalay, Mustafa Hakan, juhendaja
dc.contributor.advisorAlfieri, Luca, juhendaja
dc.contributor.authorWanyama, Geofrey
dc.contributor.otherTartu Ülikool. Majandusteaduskondet
dc.contributor.otherTartu Ülikool. Sotsiaalteaduste valdkondet
dc.date.accessioned2020-06-18T14:46:47Z
dc.date.available2020-06-18T14:46:47Z
dc.date.issued2020
dc.description.abstractThe study identifies important variables in detecting the likely occurrence of a financial crisis 1 to 3 years from its onset . We do this by implementing random forest on Macroeconomic Historical time series data set for 16 developed countries from 1870-2016. By comparing the misclassification error for logistic regression to that obtained for random forest, we show that random forest outperforms logistic regression under the out-of-sample setting for long historical macroeconomic data set. Using the SMOTE technique, we show that minimising class imbalance in the data set improves the performance of random forest. The results show that important variables for detecting a financial crisis 1 to 3 years from its onset vary from country to country. Some similarities are however also observed. Credit and money price variables for instance emerge as very important predictors across a number of countries.en
dc.identifier.urihttp://hdl.handle.net/10062/68106
dc.language.isoengen
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.othermagistritöödet
dc.subject.othermaster's thesesen
dc.subject.otherfinantskriisidet
dc.subject.otherprognoosimine (maj.)et
dc.subject.otherfinancial crisesen
dc.subject.othereconomic forecastingen
dc.titleEarly warning system for financial crisis: application of random foresten
dc.typeThesisen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wanyama_geofrey.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: