How Well do LLMs know Finno-Ugric Languages? A Systematic Assessment

dc.contributor.authorKuulmets, Hele-Andra
dc.contributor.authorPurason, Taido
dc.contributor.authorFishel, Mark
dc.contributor.editorJohansson, Richard
dc.contributor.editorStymne, Sara
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-18T09:35:07Z
dc.date.available2025-02-18T09:35:07Z
dc.date.issued2025-03
dc.description.abstractWe present a systematic evaluation of multilingual capabilities of open large language models (LLMs), specifically focusing on five Finno-Ugric (FiU) languages. Our investigation covers multiple prompting strategies across several benchmarks and reveals that Llama-2 7B and Llama-2 13B perform weakly on most FiU languages. In contrast, Llama 3.1 models show impressive improvements, even for extremely low-resource languages such as Võro and Komi, indicating successful cross-lingual knowledge transfer inside the models. Finally, we show that stronger base models outperform weaker, language-adapted models, thus emphasizing the importance of base model in successful language adaptation.
dc.identifier.urihttps://hdl.handle.net/10062/107228
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofseriesNEALT Proceedings Series, No. 57
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleHow Well do LLMs know Finno-Ugric Languages? A Systematic Assessment
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nodalida_1_37.pdf
Suurus:
325.29 KB
Formaat:
Adobe Portable Document Format