Antibiotic resistance in connected engineered and natural aquatic environments
Date
2021-11-29
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Antibiootikumid on kõige olulisemad bakteriaalsete infektsioonide ravimiseks mõeldud ained, kuid kõikide antibiootikumide vastu tekib bakteritel ühel hetkel resistentsus, st et antibiootikum ei suuda enam bakterit tappa. Nii on antibiootikumiresistentsusest kujunenud tänapäeval üks suurimaid tervishoiuprobleeme maailmas. See ei ole siiski ainult meditsiinisektori probleem, vaid selle tekke ja leviku taga on ka antibiootikumide kasutamine põllumajanduses ja loomakasvatuses. Reoveepuhastusjaamade heitvesi on üks peamisi teid, kuidas resistentsus tehiskeskkonnast looduslikku keskkonda pääseb, kuna reoveepuhastuse käigus ei eemaldata kõiki antibiootikumijääke, resistentseid baktereid ega ka antibiootikumiresistentsust põhjustavaid geene. Kuna reoveepuhastusjaamade heitvesi juhitakse enamasti looduslikesse veekogudesse, näiteks ojadesse või jõgedesse, suureneb resistentsusnäitajate arv reoveepuhasti väljavoolust allavoolu jäävatel aladel. Antibiootikumiresistentsed bakterid ja resistentsusgeenid võivad kanduda edasi põhjavette, jõgedesse ja lõpuks ka merre. Sealt võivad need omakorda inimesele tagasi kanduda, näiteks saastunud vett juues, mereande süües või ujudes.
Siinse doktoritöö eesmärgiks oli kirjeldada, kuidas reoveepuhastusjaamast pärinevad antibiootikumiresistentsusgeenid levivad allavoolu jäävasse ojja, sealt edasi jõkke ning viimaks Läänemerre. Töö tulemustest selgus, et reoveepuhastusjaamal on kõige suurem mõju vahetus läheduses (0,3 kilomeetrit) oleva veekeskkonna mikroobikoosluse struktuurile ja antibiootikumiresistentsusgeenide arvukusele. Samas juba 3,7 kilomeetrit eemal oli jõe bakterikooslus võrreldav reoveepuhastist ülesvoolu jääva alaga. Siiski tulenevalt Läänemere eripäradest – suur reostuskoormus, tihe rannikuala asustatus, suur valgala, aeglane veevahetus, madal vesi – on merekeskkond väga tundlik antibiootikumiresistentsusgeenide reostuse suhtes.
Antibiotic resistance in connected engineered and natural aquatic environments Antibiotics are the most important drugs for treating bacterial infections, but all antibiotics introduced are susceptible to resistance, which means that the antibiotic no longer kills the bacteria. Thus, antibiotic resistance has become one of the biggest human health problems in the world today. Antibiotic resistance is not only a problem in medicine, but the use of antibiotics in agriculture and animal husbandry also play an important role in the spread of antibiotic resistance. Wastewater treatment plants effluent is one of the main pathways by which the resistance determinants from the human environment are introduced to the natural environment, because not all antibiotic residues, resistant bacteria and antibiotic resistance encoding genes are removed during wastewater treatment process. Since wastewater treatment plants effluent is often discharged into natural waterbodies, such as streams and rivers, the number of resistance determinants in downstream water increases. Antibiotic resistant bacteria and resistance genes can be transmitted to groundwater, rivers and ultimately to the sea, from where they can also be transmitted back to humans - for example, by drinking contaminated water, eating seafood or swimming. The aim of this thesis was to describe the dissemination pathway of the antibiotic resistance genes originating from the wastewater treatment plant effluent through the primary receiving waterbody to the final receiving waterbody (Baltic Sea). The results indicated that the wastewater treatment plant has the greatest impact on the aquatic environment in the close vicinity (0.3 kilometers) of the effluent as already 3.7 kilometers downstream the bacterial community of the river was comparable to the area upstream of the wastewater treatment plant effluent. However, the Baltic Sea is very vulnerable to ARG contamination due to its specifics (long water retention time, shallowness, large catchment area, high pollution load).
Antibiotic resistance in connected engineered and natural aquatic environments Antibiotics are the most important drugs for treating bacterial infections, but all antibiotics introduced are susceptible to resistance, which means that the antibiotic no longer kills the bacteria. Thus, antibiotic resistance has become one of the biggest human health problems in the world today. Antibiotic resistance is not only a problem in medicine, but the use of antibiotics in agriculture and animal husbandry also play an important role in the spread of antibiotic resistance. Wastewater treatment plants effluent is one of the main pathways by which the resistance determinants from the human environment are introduced to the natural environment, because not all antibiotic residues, resistant bacteria and antibiotic resistance encoding genes are removed during wastewater treatment process. Since wastewater treatment plants effluent is often discharged into natural waterbodies, such as streams and rivers, the number of resistance determinants in downstream water increases. Antibiotic resistant bacteria and resistance genes can be transmitted to groundwater, rivers and ultimately to the sea, from where they can also be transmitted back to humans - for example, by drinking contaminated water, eating seafood or swimming. The aim of this thesis was to describe the dissemination pathway of the antibiotic resistance genes originating from the wastewater treatment plant effluent through the primary receiving waterbody to the final receiving waterbody (Baltic Sea). The results indicated that the wastewater treatment plant has the greatest impact on the aquatic environment in the close vicinity (0.3 kilometers) of the effluent as already 3.7 kilometers downstream the bacterial community of the river was comparable to the area upstream of the wastewater treatment plant effluent. However, the Baltic Sea is very vulnerable to ARG contamination due to its specifics (long water retention time, shallowness, large catchment area, high pollution load).
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Keywords
aquatic environment, bacteria, drug resistance, antibiotics, waste water, water microbiology