Audio Transformations Based Explanations (ATBE) for deep learning models trained on musical data
Kuupäev
2024
Autorid
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
Tartu Ülikool
Abstrakt
Süvaõppe mudeli käitumise selgitamine on keeruline. Arvutinägemismudelite puhul on olemas mitu meetodit, millega saab esile tuua piirkonnad, millele võrk pildil keskendub. Muusika klassifitseerimise mudeli puhul ei anna see tavaliselt rahuldavat tulemust, sest heli põhjal treenitud mudelite tõlgendamine peab põhinema mitte visuaalsetel, vaid muusikalistel mõistetel, mis on seotud inimeste jaoks oluliste akustiliste omadustega, nagu helikõrgus, tempo, meloodia, harmoonia. Käesolevas lõputöös pakume välja uut meetodit, mis aitab heli muutes välja selgitada, millised akustilised omadused olid olulised teatud klasside ennustamiseks. Selleks kasutatakse neid vigu, mida mudel muudetud sisendil teeb, ja LIME meetodi.
Kirjeldus
Märksõnad
music information retrieval, model explainability, data augmentation