Automated Detection and Quantification of Stomata
dc.contributor.advisor | Hõrak, Hanna, juhendaja | |
dc.contributor.advisor | Haamer, Rain Eric, juhendaja | |
dc.contributor.author | Gorbachenko, Ivan | |
dc.contributor.other | Tartu Ülikool. Loodus- ja täppisteaduste valdkond | |
dc.contributor.other | Tartu Ülikool. Tehnoloogiainstituut | |
dc.date.accessioned | 2024-06-17T07:57:14Z | |
dc.date.available | 2024-06-17T07:57:14Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This thesis presents an approach for the automated detection and quantification of stomata using machine learning techniques. The study focuses on employing the YOLOv8 model to analyse video data of leaf epidermal imprints, significantly improving the efficiency and accuracy of stomatal detection compared to traditional manual methods. The results highlight the model's ability to handle varying focal depths within video frames, ensuring consistent stomatal counts. Future research directions include expanding the dataset and incorporating advanced image analysis techniques to further enhance detection accuracy. | |
dc.identifier.uri | https://hdl.handle.net/10062/99640 | |
dc.language.iso | en | |
dc.publisher | Tartu Ülikool | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Estonia | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ee/ | |
dc.subject | Stomatal detection | |
dc.subject | Machine learning | |
dc.subject | YOLOv8 | |
dc.subject | Plant phenotypin, image analysis | |
dc.subject | Image analysis | |
dc.subject.other | bakalaureusetööd | et |
dc.title | Automated Detection and Quantification of Stomata | |
dc.title.alternative | Õhulõhede automaatne tuvastamine ja loendamine | |
dc.type | Thesis |
Files
Original bundle
1 - 1 of 1