Carbon use strategies of macrophyte communities in the northeastern Baltic Sea: implications for a high CO2 environment
Date
2023-09-28
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Merevee võime omastada süsinikdioksiidi (CO2) aitab vähendada atmosfääri CO2 taset ja leevendada inimtekkelisi kliimamuutusi. Ookeanid on juba omastanud umbes 30% CO2 heitkogustest, mille tulemusena merevesi hapestub. Kui süsinikdioksiid reageerib mereveega, muutub karbonaatkeemia oluliselt: lahustunud süsinikdioksiidi (CO2) ja vesinikkarbonaadi (HCO3-) kontsentratsioon suureneb, samas kui karbonaadi (CO32-) kontsentratsioon väheneb. IPCC stsenaariumide kohaselt jätkub atmosfääri CO2 kontsentratsiooni tõus, mis võib põhjustada Läänemere keskosa pinnavee pH languse kuni 0,5 pH-ühiku võrra selle sajandi lõpuks. Läänemeri on merevee hapestumisele eriti vastuvõtlik madala aluselisuse ja vähese soolsuse tõttu, mis eristab seda avamereveest. Uuringud on näidanud, et merevee hapestumise mõju võib erinevatele liikidele olla positiivne, negatiivne või neutraalne. Üks viis merevee hapestumisega seotud muutuste mõistmiseks on uurida, milliseid süsiniku vorme ja strateegiaid makrofüüdid fotosünteesi käigus kasutavad. See, kuidas CO2 tõus merevees mõjutab liikidevahelist konkurentsi ja koosluse struktuuri, sõltub sellest, kas liikidel on süsiniku kontsentreerimise mehhanism (CCM) ja millised need mehhanismid on. Käesoleva doktoritöö eesmärk oli hinnata merevee hapestumise mõjusid rannikumere makrofüütidele, et prognoosida võimalikke muutusi liigi ja koosluse tasemel. Selleks uuriti Eesti rannikualal kasvavate peamiste makrofüütide süsiniku omastamise strateegiaid, määrati makrofüütide stabiilseid süsiniku isotoope (δ13C), uuriti nende võimet muuta pH-d ja mõõdeti fotosünteetilist võimekust erinevatel lahustunud anorgaanilise süsiniku (DIC) kontsentratsioonidel. Lisaks teostati looduslikes makrofüütide kooslustes pH ja CO2 in situ mõõtmised ning võeti proove iga uuritava liigi kasvukohast ning arvutati karbonaatkeemia näitajad. Üldiselt võib oodata, et tuleviku kõrgema CO2 kontsentratsiooniga keskkond Läänemeres pakub füsioloogilisi eeliseid makrofüütidele, kes elutsevad taimestikuvööndi kõige madalamates ja sügavamates piirkondades, samal ajal kui vahepealsed kooslused, kus elutseb mitmeaastane pruunvetikas Fucus vesiculosus, võivad end leida ebasoodsast seisundist. Üldiselt võib oodata, et merevee hapestumine mõjutab liikidevahelist konkurentsi ja koosluste struktuuri, mis võib põhjustada muutusi kogu ökosüsteemis.
The ocean's capacity to absorb CO2 helps to reduce atmospheric CO2 levels and mitigate human-induced climate change. The oceans have already absorbed around 30% of CO2 emissions, leading to ocean acidification. When CO2 reacts with seawater, it significantly alters carbonate chemistry, increasing dissolved CO2 and bicarbonate concentrations while reducing carbonate concentrations. According to IPCC emission scenarios, surface water pH in the central Baltic Sea could drop by up to 0.5 pH units by the end of the century as atmospheric CO2 levels continue to rise. The Baltic Sea is more vulnerable to ocean acidification than the open ocean due to factors like low DIC concentrations and low alkalinity in most areas, high freshwater input, and low salinity. Research has shown varied responses to ocean acidification across species, populations, and even life stages within the same species, with no universal pH thresholds applicable to all organisms. This doctoral thesis aimed to assess the impacts of increased carbon on common macrophytes in the northeastern Baltic Sea's coastal ecosystems to anticipate potential changes under future climate conditions. This was achieved by studying the most common macrophyte species, which, as primary producers, play a crucial role in trophic food chains, nutrient cycling, habitat provision, littoral microclimate, hydrochemical processes, and sediment dynamics. Carbon uptake mechanisms were examined to understand and compare how different macrophyte species and communities might respond to predicted changes in seawater chemistry due to ocean acidification in the brackish Baltic Sea. It was found that the anticipated change in seawater carbon chemistry may cause shifts in the distribution of habitat-forming species. Generally, macrophytes in the shallowest and deepest parts of the vegetated zone are expected to benefit physiologically under future CO2 conditions, while intermediate communities dominated by the perennial brown alga Fucus vesiculosus may experience a decline in fitness. These differences in fitness could have consequences for competitive interactions and species distribution in a future climate.
The ocean's capacity to absorb CO2 helps to reduce atmospheric CO2 levels and mitigate human-induced climate change. The oceans have already absorbed around 30% of CO2 emissions, leading to ocean acidification. When CO2 reacts with seawater, it significantly alters carbonate chemistry, increasing dissolved CO2 and bicarbonate concentrations while reducing carbonate concentrations. According to IPCC emission scenarios, surface water pH in the central Baltic Sea could drop by up to 0.5 pH units by the end of the century as atmospheric CO2 levels continue to rise. The Baltic Sea is more vulnerable to ocean acidification than the open ocean due to factors like low DIC concentrations and low alkalinity in most areas, high freshwater input, and low salinity. Research has shown varied responses to ocean acidification across species, populations, and even life stages within the same species, with no universal pH thresholds applicable to all organisms. This doctoral thesis aimed to assess the impacts of increased carbon on common macrophytes in the northeastern Baltic Sea's coastal ecosystems to anticipate potential changes under future climate conditions. This was achieved by studying the most common macrophyte species, which, as primary producers, play a crucial role in trophic food chains, nutrient cycling, habitat provision, littoral microclimate, hydrochemical processes, and sediment dynamics. Carbon uptake mechanisms were examined to understand and compare how different macrophyte species and communities might respond to predicted changes in seawater chemistry due to ocean acidification in the brackish Baltic Sea. It was found that the anticipated change in seawater carbon chemistry may cause shifts in the distribution of habitat-forming species. Generally, macrophytes in the shallowest and deepest parts of the vegetated zone are expected to benefit physiologically under future CO2 conditions, while intermediate communities dominated by the perennial brown alga Fucus vesiculosus may experience a decline in fitness. These differences in fitness could have consequences for competitive interactions and species distribution in a future climate.
Description
Väitekirja elektrooniline versioon ei sisalda publikatsioone
Keywords
sea water, acidification, macrophytes, carbon assimilation, photosynthesis, Baltic Sea