Real-Time Ensemble Based Face Recognition System for Humanoid Robots

dc.contributor.advisorAnbarjafari, Gholamreza
dc.contributor.advisorBolotnikova, Anastasia
dc.contributor.authorSamuel, Kadri
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Tehnoloogiainstituutet
dc.date.accessioned2016-06-14T12:31:26Z
dc.date.available2016-06-14T12:31:26Z
dc.date.issued2016
dc.description.abstractHumanoid robots are being used in many industrial and domestic application in which human-robot interaction plays an important role. One of the important existing challenges is developing an accurate real-time face recognition system which is not required to be computationally expensive. In this research work a real-time face recognition system which requires low computational complexity is proposed. For this purpose, this thesis is investigating block processing of local binary patterns of the face images captured by NAO robot, a humanoid. For test purposes, the proposed method is adopted on NAO robot and tested under realworld conditions. The experimental results through this thesis are showing that the proposed face recognition algorithm compares favorably to the conventional and state-of-the-art techniques.en
dc.identifier.urihttp://hdl.handle.net/10062/51862
dc.language.isoeng
dc.publisherTartu Ülikoolet
dc.subjectLocal binary patterns, face recognition, human-robot interaction, YUV colour space, ensemble methods, machine learning, humanoid robots, NAO robots, computer vision, T111 Image processingen
dc.subject.otherbakalaureusetöödet
dc.titleReal-Time Ensemble Based Face Recognition System for Humanoid Robotsen
dc.title.alternativeReaalajaline ansamblitele tuginev näaotuvastussüsteem humanoidrobotiteleet
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Samuel_BA2016.pdf
Suurus:
740.54 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: