2. Kaitsmiseks esitatud doktoritööd. Pre-Theses only
Selle kollektsiooni püsiv URIhttps://hdl.handle.net/10062/38
Vaata ka
Tartu Ülikooli doktoriõppe eeskiri
Doktoritööd edastab TÜ Kirjastus vastavalt ülikoolisisesele korrale.
Autoril palume hoolikalt jälgida autoriõiguslikke aspekte ja edastada õigeaegselt informatsioon väitekirja nende osade kohta, mille avaldamiseks õigused puuduvad (ilmunud artiklid, graafilised materjalid etc)
Sirvi
Sirvi 2. Kaitsmiseks esitatud doktoritööd. Pre-Theses only Autor "Dumas Menjivar, Marlon Gerardo, juhendaja" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Data-driven analysis and optimization of waiting times in business processes(Tartu Ülikooli Kirjastus, 2024-12-18) Lashkevich, Katsiaryna; Milani, Fredrik Payman, juhendaja; Dumas Menjivar, Marlon Gerardo, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondOoteajad on äriprotsessides vältimatud, kuid nende ignoreerimine võib viia märkimisväärsete ebaefektiivsusteni. Mõelge näiteks oma teadusartiklile, mis on valmis laiemale avalikulasele esitamiseks, kuid takerdub sellegipoolest retsensendi lauale — miks? Mis põhjustab sarnaseid ooteaegu ja kuidas neid vähendada? Enamik äriprotsesse toetuvad tarkvararakendustele, nagu näiteks retsensentide poolt kasutatavad käsikirjade haldamise süsteemid. Need süsteemid jälgivad protsessis osalejate tegevusi ja genereerivad sündmuslogisid, kuhu salvestatakse protsessi täitmise andmed. Protsessikaevetehnikad võimaldavad selliste sündmuslogide analüüsi, pakkudes seeläbi täiendavat informatsiooni protsessi jõudluse kohta. See väitekiri pakub välja komplekti protsessikaevele tuginevaid lähenemisviise tuvastamaks ooteaegade põhjuseid sündmuslogidest ja soovitamaks tõhusaid protsessideümberkorraldusi. Nendest esimene võimaldab rühmitamisest põhjustatud ooteaegade tuvastamist (näiteks suurema hulga käsikirjade ootamine enne retsenseerimisega alustamist) ja analüüsi paljastamaks võimalikke parendamisvõimalusi. Seejärel laiendatakse antud analüüsi teistele põhjustele, tutvustades lähenemisviisi, mis võimaldab viit tüüpi ooteaegade põhjuste tuvastamist: rühmitamine, ressursside hõivatus (retsensendid tegelevad teiste käsikirjadega), prioriseerimine (retsensendid eelistavad teatud käsikirju teie omale), ressursside puudumine (retsensendid on puhkusel) ja välised tegurid (retsensendid tegelevad teiste protsesside ülesannetega, näiteks valmistavad ette teadusprojektide taotlusi). Nende põhjuste analüüs aitab võimalikke parendusvõimalusi täpsemalt fokuseerida. Viimaks, tutvustatakse meetodit suurte keelemudelite peenhäälestamiseks eesmärgiga täiendavalt analüüsida tuvastatud ooteaegade põhjuseid ja soovitada protsesside ümberkorraldusi (näiteks artiklite arvu vähendamine rühmas või retsensentide töökoormuse ühtlasem tasakaalustamine), mis on suunatud tuvastatud põhjustele. Pakutud lähenemisviisid on rakendatud tarkvaratööriistas Kronos, mis võimaldab analüütikutel diagnoosida ooteaegade põhjuseid ja saada ettepanekuid protsesside ümberkorraldamiseks. See on samm äriprotsesside sujuvamaks muutmise poole, sealhulgas kiirendades ka teie uurimistöö avaldamise protsessi.