MMI magistritööd – Master's theses. Kuni 2015
Selle kollektsiooni püsiv URIhttps://hdl.handle.net/10062/30416
Sirvi
Sirvi MMI magistritööd – Master's theses. Kuni 2015 Kuupäev järgi
Nüüd näidatakse 1 - 20 22
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Mittelineaarsete rajaväärtusülesannete lahendamismeetoditest(Tartu Ülikool, 1978) Merilo, Maaja; Lepik, Ülo, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Cesaro ja Rieszi menetluste baasil defineeritud jadaliste menetlustega määratud tuumadest(Tartu Ülikool, 1993) Tohver, Epp; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Dispersioonikomponentide ja päritavuskoefitsiendi hindamine loomapopulatsioonides(Tartu Ülikool, 1997) Kaart, Tanel; Möls, T., juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Mittelineaarsete plastsete silindriliste koorikute optimiseerimine(Tartu Ülikool, 2003) Paltsepp, Annika; Lellep, Jaan, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Telgsümmeetrilise plaadi paine(Tartu Ülikool, 2003) Vlassov, Boriss; Lellep, Jaan, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Stabiilsete jaotuste parameetrite hindamine : magistritöö(Tartu Ülikool, 2003) Krutto, Annika; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Cubic spline collocation for Volterra integral equations(Tartu Ülikool, 2003) Saveljeva, Darja; Oja, Peeter, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Mitmene võrdlemine protseduuriga MULTTEST(Tartu Ülikool, 2006) Bileva, Anna; Parring, Anne-Mai, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Nihutatud mitmemõõtmeline asümmeetriline Laplace’i jaotus(Tartu Ülikool, 2007) Kilgi, Helle; Kollo, Tõnu, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Soliidsed jadaruumid(Tartu Ülikool, 2009) Masing, Pille; Leiger, Toivo, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKirje Algebraliste võrrandite lahenduvus radikaalides(Tartu Ülikool, 2013) Paas, Raido; Mart Abel, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskondIn the thesis we studied the problem of solving the algebraic equations by radicals { a problem which has interested mathematicians for centuries. In particular we studied the group theory and the eld theory which helped us to research into the matter of solving the algebraic equations by radicals. We then learned about Lagrange's idea of solving the equations of lower degree which served as a starting point for developing Galois theory. Using the latter, we were nally able to provide a criterion for solving the equations by radicals. By using that criterion we showed that not all equations of fth degree can be solved by radicals. It became evident that in order to prove the fact a lot of work had to be done. Nevertheless, the original ideas from Lagrange and Galois are worth investigating. We just have to agree with the words of Professor Gunnar Kangro (see [1], page 154): The research made by Galois presents one of the deepest and most fruitful theories, ever done by the spirit of man. Galois theory has been investigated further nowadays and there is an abstract theory for solving the equations by radicals. Current studying material is a good starting point for anyone who is interested in this theory.Kirje Operaatorideaalid ning genereerivate hulkade ja genereerivate jadade süsteemid(Tartu Ülikool, 2013) Lillemets, Rauni; Oja, Eve, juhendaja;This master thesis aims to study the notions of operator ideals, generating systems of sets and generating systems of sequences and connections between them. The master thesis consists of seven chapters. In the first chapter the necessary notions and general lemmas are introduced. In the second chapter the definition and historical background of the notion of relatively (p; r)-compact sets are given, where 1 p 1; 1 r p and p is the conjugate index of p. It is shown that the relatively (1; 1)-compact sets are exactly the relatively compact sets. In the third chapter we look at the notion of an operator ideal. Let the class of all operator ideals be denoted by OI. An operator is said to be (p; r)-compact if it maps every bounded set to a relatively (p; r)-compact set. We denote the class of all (p; r)-compact operators by K(p;r) and show that K(p;r) 2 OI. The fourth chapter starts with the notion of generating system of sets that was introduced in [12] by I. Stephani in 1980s. This notion is of importance because it gives a possibility to generate a new operator ideal from two given generating systems of sets. We denote the class of all generating systems of sets by GHS and define a partial order on GHS. Let the class of all relatively (p; r)-compact sets be denoted by K(p;r). The class K(1;1) coincides with the class K of the relatively compact sets. The fifth chapter is devoted to the notion of generating system of sequences that was also introduced in [12] by Stephani. Let the class of all generating systems of sequences be denoted by GJS. Stephani showed that from a given generating system of sequences it is possible to generate a new generating system of sets. Let g 2 GJS. We denote the system of sets generated from g by ->g . Denote the system of convergent sequences by c. It is easily obtained that ->c = K. We define a system G 2 GHS to be generatable if there exists a system g 2 GJS such that ->g = G. We ask the question: is the system K(p;r) generatable? More generally, given a system G 2 GHS, how to decide whether this system is generatable? We start the sixth chapter by introducing a pre-order on the class GJS. With the help of this pre-order, we define an equivalence relation on GJS and find 57 the corresponding quotient class GJS= . On this class we now introduce a partial order. We then define operations ! and between the classes GJS= and GHS. We show that these operations (!; ) form a Galois connection. Using the Galois connection we give a criterion that allows to decide whether a given generating system of sets is generatable. We also give an answer to the question whether the system of sets K(p;r) is generatable. In the seventh chapter we show that the classes of operator ideals and generating systems of sets and sequences are all examples of lattices.Kirje Morfismidest kokorrutiste vahel järjestatud ja additiivsel juhul(Tartu Ülikool, 2013) Reimaa, Ülo; Laan, Valdis, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutIn mathematics morphisms between various structures are often studied. In particular, the endomorphisms of a structure can be of interest. The collection of endomorphisms of a given structure is a monoid. Studing that monoid can be easier, if the monoid is decomposed into simpler monoids using some construction. One such construction was given by Vladimir Flaicher and Ulrich Knauer in 1988. They proved that the endomorphism monoid of an act over a monoid is isomorphic to the wreath product of some monoid and some small category. In the present work we try to generalize that result. We interpret the essence of the theorem to be, that to know morphisms between objects and the composition of these morphisms, it suffices to know the morphisms between suitable subobjects of the given objects and the compositions of these morphisms between subobjects. The theorem we mentioned gives a result of that sort for the representation of the endomorphism monoid of an act over a monoid. We generalize the result in different directions. For one, we do not restrict ourselves to any specific category, but try to give a result for all categories. Another direction in which we generalize the result, is that we try to represent full subcategories of given categories not only endomorphism monoids. The third direction of generalization is enrichment. To be more precise, we look at two specific cases of enrichment. We hope that in doing so, finding a common generalization for them might become easier. We view enrichment over the category of partially ordered sets and enrichment over the category of Abelian groups. The case of partially ordered sets is similar to the case of ordinary categories. Indeed, ordinary categories can be viewed as order enriched categories with discrete order. We prove a generalization of [8] theorem II.7.7 and see how what we proved relates to it. We also prove a result relating to the existence of nice decompositions for a certain subclass of categories. The case of enrichement over Abelian groups is somewhat different from the case of ordinary categories. It does not generalize it. We prove an analogue of [8] theorem II.7.7. And present some simple, known results, that the author found here and there, that clarify the situation and help in applying the proven theorem. We also present, without proof, a couple of known results in the case of modules over a ring.Kirje Radon-Nikodymi omadus(Tartu Ülikool, 2014-08-13) Martsinkevitš, Julia; Põldvere, Märt, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutMagistritöös kirjutatakse lahti mõned klassikalised baastulemused Radon–Nikodými omadusega Banachi ruumide kohta. Töös on käsitletud Radon– Nikodými omaduse samaväärsust pidevate lineaarsete operaatorite (Rieszi mõttes) esituvusega, separaableid kaasruume, vektorväärtustega funktsiooni tingliku ootuse olemasolu, martingaalide koonduvuse põhiteoreemi ning Banachi ruumi Radon– Nikodými omaduse samaväärsust selle ruumi tõkestatud alamhulkade hambuvusega. Muuhulgas tõestatakse, et Banachi ruumi tõkestatud alamhulk on hambuv parajasti siis, kui tal leidub kui tahes väikese diameetriga viilusid. Töö põhiliseks allikmaterjaliks on J. Diesteli ja J. J. Uhli, Jr., monograafia Vector Measures (Amer. Math. Soc., 1977).Kirje Lipschitzi kujutused ja M-ideaalid(Tartu Ülikool, 2014-08-13) Niglas, Heiki; Oja, Eve, juhendaja; Zolk, Indrek, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKäesolevas magistritöös näidatakse üksikasjalikult, kuidas Nigel J. Kaltoni artiklis [K2, Theorem 6.6] tõestatud teoreemist järeldub positiivne lahendus Dirk Werneri and Heiko Berningeri poolt artiklis [BW] uuritud probleemile: kas väike Hölderi ruum lip([0; 1] ), kus 0 < < 1, on M-ideaal suures Hölderi ruumis Lip([0; 1] )? Magistritöös tõestatakse samuti kaks uut tulemust väikese Lipschitzi ruumi lip(M) kohta. Esiteks tõestatakse, et kui M on kompaktne meetriline ruum, siis ruumil lip(M) on omadus (M ). Teiseks näidatakse, et kui M on kompaktne meetriline ruum ja ruumil lip(M) on meetriline aproksimatsiooniomadus, siis ruumil lip(M) on omadus (M1). Kasutades neid tulemusi tõestatakse mitu olulist järeldust. Esimese teoreemi abil näidatakse muu hulgas, et kui M on kompaktne meetriline ruum ja X on selline Banachi ruum, mille korral ruum K(X) on M-ideaal ruumis L(X), siis ruum K(lip(M);X) on M-ideaal ruumis L(lip(M);X). Teise teoreemi abil saadakse, et kui M kompaktne meetriline ruum ja ruumil lip(M) on meetriline aproksimatsiooniomadus, siis ruum K(lip(M); Y ) M-ideaal ruumis L(lip(M); Y ) iga Banachi ruumi Y korral.Kirje Diameter 2 properties(Tartu Ülikool, 2015-05-19) Langemets, Johann; Haller, Rainis, juhendaja; Nygaard, Olav, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutThe thesis consists of a preliminary part and a main part, which has been organized as follows. Chapter 1 contains an introduction, where we explain our motivation and the goal of the thesis, and present a brief overview of our starting points. In addition to this narrative summary section, we describe the notation. In chapter 2, we recall some basic definitions and initial results. The first section deals with the weak topology of a normed space and the weak* topology of its dual space. We added this section because a student with a solid first course in functional analysis may not have seen some results mentioned here. This is followed by a section where we introduce the notion of a slice. The essential concept of this master thesis is based on slices of the unit ball. In the third section, we recall the term of an extreme point and the Krein Milman theorem. The Choquet lemma is presented next, this is used in our fifth section to prove the main result in this chapter Bourgain's lemma. Chapter 3 is the main part of this thesis. We start with the definitions of the diameter 2 properties under consideration, and establish them for classical spaces l, c0, L1[0; 1], and C0(K). It is known that Banach spaces with the Daugavet property have the strong diameter 2 property. We will verify this following the main idea but modifying slightly some details to our liking. Next we study how the diameter 2 properties are preserved by projective tensor products and lp-sums of Banach spaces. A detailed proof is given to the fact that the projective tensor product X^ Y of Banach spaces X and Y has the local diameter 2 property whenever X or Y has the local diameter 2 property. It is known that the (local) diameter 2 property is stable by taking lp-sums for all 1 p 1. On the other hand, we show that, for nontrivial Banach spaces X and Y , for all 1 < p < 1, the Banach space X p Y cannot enjoy the strong diameter 2 property whether or not X and Y have it. We end this chapter by establishing the diameter 2 properties for M- ideals. In fact, if Y is a strict M-ideal in X, then both Y and X have the strong diameter 2 property. Thus, if X is an M-ideal in X**, then both X and X** have the strong diameter 2 property. Finally, we show that if Y is an M-ideal in X, then any diameter 2 property of Y is carried to X.Kirje n-Lie superalgebrad(Tartu Ülikool, 2015-08-11) Lätt, Priit; Abramov, Viktor, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKäesolevas magistritöös tuletame meelde mõned Lie algebrate teooria põhitõed ja vaatame selle klassikalise struktuuri üldistusi. Filippov konstrueeris artiklis [7] n-Lie algebra, kus binaarne kommutaator on asendatud n-aarse analoogiga. Meie kombineerime viimase Lie superalgebra struktuuriga, mis üldistab Lie algebraid kasutades Z2 -gradueeritud vektorruumi ning gradueeringu iseärasusi kommutaatoril tavalise vektorruumi asemel, et saada n-Lie superalgebra, nagu seda on tehtud artiklis [1]. Me uurime n-Lie superalgebra, ehk n-aarse gradueeritud Filippovi samasust rahuldava tehtega superalgebra omadusi, ning rakendades ideid artiklitest [1, 3] indutseerime n-Lie superalgebratest (n +1)-Lie superalgebrad. Viimaks uurime me ternaarseid Lie superalgebraid üle C, kus algebra aluseks oleva supervektorruumi dimensioon on m|n, m + n ≤ 4. Me teeme kindlaks kui palju on erinevaid võimalikke kommutatsioonieeskirju, mida neile tingimustele vastavad 3-Lie superalgebrad omada võivad.Kirje Laplace’i teisenduse kasutamine diferentsiaalvõrrandite lahendamisel(Tartu Ülikool, 2015-08-11) Laanemaa, Anna Marita; Pedas, Arvet, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutOlgu funktsioon f määratud poollõigus [0, ∞). Funktsiooni f Laplace’i teisenduseks nimetatakse integraalteisendust kujul F (s) = Z ∞ 0 e −st f (t) dt. (1) Parameeter s on üldiselt kompleksarv, kuid käesolevas töös (välja arvatud paragrahv 3) eeldame, et s on reaalarv. Lisaks märgime, et selles töös enamasti rakendatakse Laplace’i teisendust tükiti pidevatele ja eksponentsiaalse kasvuga funktsioonidele, mida nimetatakse originaalideks. Laplace’i teisendust (1) märgitakse sageli kujul F (s) = L[f ](s) või F (s) = L[f (t)](s). Teisenduse (1) juured algavad šveitsi matemaatiku ja füüsiku Leonhard Euleri (1707−1783) töödest aastatel 1763 ja 1769. Kuid kõnealune teisendus on nimetatud siiski Laplace’i teisenduseks prantsuse matemaatiku, füüsiku ja astronoomi Pierre-Simon Laplace’i (1749−1827) auks, kes kasutas seda teisendust esmakordselt oma tõenäosusteooria alases töös aastal 1782 (vt [3], lk 319−331). Magistritöö on põhiliselt referatiivse iseloomuga ja tugineb peamiselt raamatutes [2], [4] ja [8] toodud tulemustele. Töö koosneb kümnest paragrahvist ja lisas toodud tabelitest.Kirje Normi säilitavate jätkude ühesus(Tartu Ülikool, 2015-08-11) Viil, Tauri; Oja, Eve, juhendaja; Põldvere, Märt, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutMagistritöös tõestatakse omnibuss-teoreem, mis annab uusi samaväärseid tingimusi Banachi ruumi kinnise alamruumi totaalseks sileduseks. Samuti vaadeldakse normeeritud ruumide ranget kumerust ja siledust ning esitatakse detailsed tõestused Taylor–Fogueli teoreemile ja hästituntud teoreemile, mis kirjeldab normeeritud ruumi siledust kerajadade omaduste terminites.Kirje Diferentsiaalgeomeetria meetodite rakendused dünaamiliste süsteemide uurimisel(Tartu Ülikool, 2015-08-11) Ojaots, Margit; Abramov, Viktor, juhendaja; Liivapuu, Olga, kaasjuhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatika instituutKäesolev magistritöö põhineb J-M. Ginoux monograafias Differential Geometry Applied to Dynamical Systems [4] kirjeldatud ja artiklites [Diferential geometry and mechanics: Applications to Chaotic Dynamical Systems [5], Slow invariant manifold of heartbeat model [6], Flow curvature method applied to canard explosion [3]] uuritud meetoditel. Selles lähenemises me vaatleme n-dimensionaalse dünaamilise süsteemi trajektoori kõverat kui kõverat Eukleidilises ruumis. Seda meetodit nimetatakse kõveruse muutkonna meetodiks. Punktides, kus voo kõverus on null, saame defineerida muutkonna, mida nimetatakse kõveruse voo muutkonnaks. Konkreetsel juhul rakendame seda meetodit Van der Pol’i ostsillaatorile.