Tarkvara loomine erinevate k-keskmiste algoritmide rakendamiseks

dc.contributor.advisorVilo, Jaak
dc.contributor.authorPuura, Joonas
dc.date.accessioned2017-04-26T07:19:08Z
dc.date.available2017-04-26T07:19:08Z
dc.date.issued2016
dc.description.abstractKlasteranalüüsis on laialt levinud k-keskmiste meetod, mis võimaldab andmeid grupeerida nende tunnuste järgi, seejuures minimeerides ruutvigade summat klastrites olevate andmeobjektide ja vastava klastri keskpunktide vahel. Kuna k-keskmiste meetodi kui optimeerimisülesandele täpse lahenduse leidmine on NP-raske, siis on probleemi lahendamiseks võetud kasutusele mitmeid lähendeid otsivaid algoritme. Bakalaureusetöö eesmärgina valmis rakendus, mis lubab kasutada viit k-keskmiste klasterdusalgoritmi ja nelja algsete keskpunktide valimise meetodit. Kasutades nii reaalelulisi kui ka sünteetilisi andmestikke antakse ülevaade rakenduses implementeeritud algoritmide jõudlusest, mälukasutusest ja edukusest leida hea lähend k-keskmiste optimeerimisülesandele.
dc.description.abstractIn cluster analysis k-means method is a method popularly used for grouping data by their features. The method aims to minimize within-cluster sum of squared errors between data objects in clusters and their corresponding center means. Because solving k-means optimization task exactly is NP-hard there have been introduced several heuristic algorithms for finding approximations. As the goal of the thesis a software was made, which enables use of nine different algorithms, which are 5 k-means clustering algorithms and 4 methods for choosing initial centers. Using real life and synthetic datasets an overview of the application’s capabilities is given by measuring algorithms performance, memory use and approximation capabilities.
dc.identifier.urihttp://hdl.handle.net/10062/56275
dc.language.isoest
dc.titleTarkvara loomine erinevate k-keskmiste algoritmide rakendamiseks
dc.title.alternativeSoftware for Clustering Using k-means Algorithms
dc.typeThesis

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
extra.zip
Size:
68.09 KB
Format:
Compressed ZIP