Generalized Estimating Equations: an overview and application in IndiMed study

dc.contributor.advisorLäll, Kristi, juhendaja
dc.contributor.advisorKorhonen, Pasi Antero, juhendaja
dc.contributor.advisorFischer, Krista, juhendaja
dc.contributor.authorArge, Maia
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2016-07-08T07:18:26Z
dc.date.available2016-07-08T07:18:26Z
dc.date.issued2016
dc.description.abstractGeneralized Estimating Equations (GEE), developed by (Zeger & Liang 1986), is a method of estimation that accounts for correlations among repeated measurements and is widely used in longitudinal analysis. The purpose of this master’s thesis is to provide an overview of GEE and use this approach on a cluster-randomized study called IndiMed. The data are from the Estonian Genome Center of University of Tartu. The clusters are doctors who were randomized to intervention or control group and subjects are patients with high blood pressure. All subjects in one cluster are either in intervention (received genetic risk information on the 2nd visit) or control group (received risk information on the 4th visit). Systolic and diastolic blood pressures were measured on all 5 visits for all patients and compared for the two study groups, taking into account the correlation among the repeated measurements.en
dc.identifier.urihttp://hdl.handle.net/10062/52456
dc.language.isoenen
dc.subjectGeneralized Estimating Equationsen
dc.subjectmarginal modelsen
dc.subjectrepeated mesurementsen
dc.subjectcluster-randomized trialen
dc.subjecthypertensionen
dc.subjectGEE mudelidet
dc.subjectmarginaalsed mudelidet
dc.subjectkordusmõõtmisedet
dc.subjectklaster-randomiseeritud uuringet
dc.subjecthüpertensioonet
dc.subject.othermagistritöödet
dc.titleGeneralized Estimating Equations: an overview and application in IndiMed studyen
dc.typeThesisen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arge_maia_msc_2016.pdf
Size:
997.25 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: