Detecting money laundering in transaction monitoring using hidden Markov model

dc.contributor.advisorLumiste, Kaur, juhendaja
dc.contributor.authorAghahasanli, Ismayil
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2021-07-01T06:32:35Z
dc.date.available2021-07-01T06:32:35Z
dc.date.issued2021
dc.description.abstractThe purpose of the thesis is to introduce, build and test HMM as a method of detecting suspicious financial transactions that might be correlated with money laundering. HMM is a statistical Markov model in which the system being modelled is assumed to be Markov process with unobserved (i.e., hidden) states. These hidden states however generate observable outcomes. HMM fits the context of transaction monitoring in the fight against money laundering as the intent of a transaction (part of money laundering scheme or not) is and only some parameters of the transaction can be observed. The model was built and tested on artificial datasets provided by Salv Technologies and commonly used k-means clustering model was chosen for comparison. Analysis and testing showed that overall, HMM outperforms k-means clustering. Based on analysis, it can be concluded that in essence, HMM can be used in transaction monitoring but getting high precision needs expert knowledge and practical testing. A brief overview of money laundering, anomaly detection methods and HMM are given. Empirical part includes application of HMM on 3 different study cases using R software.et
dc.identifier.urihttp://hdl.handle.net/10062/72862
dc.language.isoenget
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecthidden Markov modelen
dc.subjectHMMen
dc.subjectanomaly detectionen
dc.subjectanomaaliate tuvastamineet
dc.subjectHMMet
dc.subjectvarjatud Markovi mudelet
dc.subject.othermoney launderingen
dc.subject.otherrahapesuet
dc.titleDetecting money laundering in transaction monitoring using hidden Markov modelen
dc.typeinfo:eu-repo/semantics/masterThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
aghahasanli_ismayil_msc_2021.pdf
Suurus:
850.28 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.67 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: