Predicting loan default with XGBoost: an examination of strength and application

dc.contributor.advisorKangro, Raul, juhendaja
dc.contributor.authorFelt, Grayson Steven
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2024-07-01T13:35:30Z
dc.date.available2024-07-01T13:35:30Z
dc.date.issued2024
dc.description.abstractThis thesis explores the application of the XGBoost algorithm for predicting loan defaults, a vital aspect of credit risk management. By leveraging advanced machine learning techniques, the study aims to improve the accuracy and reliability of default predictions over traditional methods. We begin with an overview of fundamental machine learning concepts, including loss functions and tree-based models, which sets the stage for a detailed examination of gradient boosting and its implementations. The focus then shifts to XGBoost, where we delve into its objective function, optimization process, and hyperparameters. Using a publicly available dataset from Bondora, we conduct thorough data preprocessing, followed by careful hyperparameter tuning using grid search and cross-validation. Our results highlight XGBoost’s ability to handle complex, real-world data effectively, resulting in significant improvements in prediction performance. This study illustrates the importance of sophisticated algorithms in advancing the field of financial predictive analytics.en
dc.identifier.urihttps://hdl.handle.net/10062/100479
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectXGBoosten
dc.subjecthyperparameter tuningen
dc.subjectmachine learningen
dc.subjectcredit risken
dc.subjectloan default predictionen
dc.subjecthüperparameetrite häälestamineet
dc.subjectmasinõpeet
dc.subjectkrediidirisket
dc.subjectlaenu maksejõuetuse prognoosimineet
dc.subjectXGBoostet
dc.subject.othermagistritöödet
dc.subject.othervõrguväljaandedet
dc.titlePredicting loan default with XGBoost: an examination of strength and applicationen
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
grayson_felt_msc_2024.pdf
Suurus:
1.7 MB
Formaat:
Adobe Portable Document Format