Gesture Detection Software for Human-Robot Collaboration

dc.contributor.advisorValner, Robert
dc.contributor.advisorKruusamäe, Karl
dc.contributor.authorRybalskii, Igor
dc.date.accessioned2021-05-27T07:27:55Z
dc.date.available2021-05-27T07:27:55Z
dc.date.issued2020
dc.description.abstractWith robots becoming more complex machines with more actions available at their disposal, it becomes harder for humans to control them without prior training. I propose a gesture detection system which uses OpenPose and ROS (Robot Operating System) to control mobile robotic platforms. Output from OpenPose is normalized into a joint angle form, which is also used to describe gestures in the system. Proposed normalization method in combination with the capability to change described gestures in a separate YAML configuration file makes the whole system scalable for a developer who can add, remove or modify gestures described by angle notation. The developed system is able to detect static gestures and was tested on three sets, each consisting of 5 gestures to control a Clearpath Jackal mobile robot. In estonian: Robotid on muutumas tehniliselt aina keerukamaks ning nende abil on võimalik täita üha enam ülesandeid. Ka robotite juhtimine on inimestele muutumas väga keeruliseks. Käesolevas lõputöös luuakse kehakeele-põhine süsteem, mis kasutab tarkvarateeke OpenPose ja ROS, et juhtida mobiilset robotplatvormi. OpenPose’i väljund normeeritakse nurkade esitlusele, milles on kirjeldatud ka kasutatavad žestid. Loodud süsteem on skaleeritav, sest normeeritud kujul žeste saab robotsüsteemi arendaja vastavalt vajadusele lisada, muuta ja eemaldada YAML-tüüpi konfiguratsioonifailis. Valminud lahenduse demostreerimiseks implementeeriti kolm erinevat 5-žestilist komplekti, mille abil juhiti Clearpath Jackal mobiilset robotit.en
dc.identifier.urihttp://hdl.handle.net/10062/72060
dc.language.isoenget
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectgesture detectionen
dc.subjecthuman-robot collaborationen
dc.subjectOpenPoseen
dc.subjectROSen
dc.subjectžestituvastuset
dc.subjectinimese ja roboti koostööet
dc.titleGesture Detection Software for Human-Robot Collaborationen
dc.title.alternativeŽestituvastus tarkvara inimese ja roboti koostöökset
dc.typeinfo:eu-repo/semantics/bachelorThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rybalskii_BSc2020.pdf
Size:
11.75 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.67 KB
Format:
Item-specific license agreed upon to submission
Description: