Forecasting time series with artificial neural networks

dc.contributor.advisorRaus, Toomas, juhendaja
dc.contributor.authorPeedosk, Hele-Liis
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2019-07-23T08:47:49Z
dc.date.available2019-07-23T08:47:49Z
dc.date.issued2019
dc.description.abstractHaving accurate time series forecasts helps to be prepared for upcoming events. As many real world time series have nonlinear and irregular behavior, traditional approaches may be lacking performance. A suitable alternative method is artificial neural network models, that can achieve high accuracy in various difficult tasks. The objective of given thesis is to give theoretical and practical guidelines for applying neural networks in time series forecasting with packages h2o and neuralnet for statistical programming language R, and library Keras for programming language Python. An empirical study was conducted on five different datasets to compare multilayer perceptron model performance with long short-term memory model, and iterative, direct and multi-neural network modeling strategies with each other. The performance of neural network models were compared with liner baseline models to expose whether the results have any practical gain. When comparing the network structures, the results indicate the superiority of long short-term memory models. Furthermore, long short-term memory models offered improvement over linear baseline model almost in case of all datasets. Based on these results, neural networks proved to have great performance for time series forecasting, and should be considered as an alternative to linear models.en
dc.identifier.urihttp://hdl.handle.net/10062/64864
dc.language.isoenget
dc.rightsopenAccesset
dc.rightsAutorile viitamine + Mitteäriline eesmärk + Tuletatud teoste keeld 3.0 Eesti*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/*
dc.subject.otheraegridade analüüset
dc.subject.othertime series analysisen
dc.subject.otherprognostikaet
dc.subject.otherforecastingen
dc.subject.otherneurovõrgudet
dc.subject.otherartificial neural networksen
dc.titleForecasting time series with artificial neural networksen
dc.typeinfo:eu-repo/semantics/masterThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
peedosk_hele_liis_msc_2019.pdf
Suurus:
1.19 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:
Pisipilt ei ole saadaval
Nimi:
Master's Thesis_Peedosk_CODE.zip
Suurus:
18.73 MB
Formaat:
Compressed ZIP
Kirjeldus:
code

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: