Bayesi segumudelid tiheduse hindamiseks

dc.contributor.advisorLember, Jüri, juhendaja
dc.contributor.authorRaihhelgauz, Mikael
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Matemaatika ja statistika instituutet
dc.date.accessioned2022-09-05T14:18:38Z
dc.date.available2022-09-05T14:18:38Z
dc.date.issued2022
dc.description.abstractMagistritöö eesmärk on tutvustada levinumaid Bayesi segumudeleid ja vastavaid Gibbsi valikul põhinevaid meetodeid tiheduse ligikaudseks hindamiseks.Samuti illustreeritakse meetodite tööd arvutisimulatsioonide abil.et
dc.identifier.urihttp://hdl.handle.net/10062/83938
dc.language.isoestet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBayesi statistikaet
dc.subjectBayesi segumudelidet
dc.subjectGibbsi valiket
dc.subjecttiheduse hindamineet
dc.subjectBayesian statisticsen
dc.subjectdensity estimationen
dc.subjectGibbs samplingen
dc.subjectBayesian mixture modelsen
dc.titleBayesi segumudelid tiheduse hindamisekset
dc.typeinfo:eu-repo/semantics/masterThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
raihhelgauz_mikael_msc_2022.pdf
Suurus:
2.64 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.67 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: